This is a preview of subscription content,
to check access.References
G. Ben Arous, L. V. Bogachev, and S. A. Molcahnov, Probab. Theory Rel. Fields 132, 579–612 (2005).
L. V. Bogachev, CRM Proc. Lect. Notes 42, 41–64 (2007).
A. Bovier, I. Kurkova, and M. Löwe, Ann. Probab. 30, 605–651 (2002).
D. Brockmann and L. Hufnagel, in Complex Population Dynamics: Nonlinear Modeling in Ecology, Epidemiology, and Genetics (World Scientific, Singapore, 2007), pp. 109–127.
J. M. Bullock and R. T. Clarke, Oecologia 124, 506–521 (2000).
A. Chakrabarty and M. M. Meerschaert, Stat. Probab. Lett. 81, 989–997 (2011).
A. Chakrabarty and G. Samorodnitsky, Stoch. Models 28(1), 109–143 (2012).
M. Cranston and S. A. Molchanov, Israel J. Math. 148, 115–136 (2005).
B. Derrida, Phys. Rev. Lett. 45, 79–82 (1980).
M. Grabchak, J. Theor. Probab. (2013) [in press].
M. Grabchak, Limit Theorems for Sequences of Tempered Stable and Related Distributions (2012). http://arxiv.org/abs/1201/6006.
M. Grabchak, J. Appl. Probab. 49, 1015–1035 (2012).
M. Grabchak and G. Samorodnitsky, Quant. Finance 10, 883–893 (2010).
B. Jorgensen, J. R. Martinez, and V. Vinogradov, Lith. Math. J. 49, 399–425 (2009).
J. Rosiński, Stoch. Proc. Appl. 117, 677–707 (2007).
Author information
Authors and Affiliations
Additional information
Published in Russian in Doklady Akademii Nauk, 2013, Vol. 451, No. 4, pp. 374–377.
The article was translated by the authors.
Rights and permissions
About this article
Cite this article
Grabchak, M., Molchanov, S.A. Limit theorems and phase transitions for two models of summation of iid random variables depending on parameters. Dokl. Math. 88, 431–434 (2013). https://doi.org/10.1134/S1064562413030204
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1064562413030204