Advertisement

Doklady Mathematics

, Volume 86, Issue 2, pp 677–680 | Cite as

The Paley-Wiener theorem in the language of Taylor expansion coefficients

  • Ha Huy BangEmail author
  • Vu Nhat Huy
Mathematics
  • 61 Downloads

Keywords

Entire Function DOKLADY Mathematic Real Coefficient Symmetric Convex Fourier Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. B. Andersen and M. Jeu, Trans. Am. Math. Soc. 362(7), 3613–3640 (2010).zbMATHCrossRefGoogle Scholar
  2. 2.
    J. Arthur, Acta Math. 150(1/2), 1–89 (1983).MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    J. Arthur, Am. J. Math. 104(6), 1243–1288 (1982).MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    L. D. Abreu and F. Bouzeffour, Proc. Am. Math. Soc. 138(8), 2853–2862 (2010).MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    E. P. Ban and H. Schlichtkrull, Ann. Math. 164(3), 879–909 (2006).zbMATHCrossRefGoogle Scholar
  6. 6.
    H. H. Bang, Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 214, 298–319 (1996).Google Scholar
  7. 7.
    H. H. Bang, Dokl. Math. 55(3), 353–355 (1997).MathSciNetGoogle Scholar
  8. 8.
    H. H. Bang, Trans. Am. Math. Soc. 347(3), 1067–1080 (1995).MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    S. Helgason, Math. Ann. 165(4), 297–308 (1966).MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    L. Hörmander, The Analysis of Linear Partial Differential Operators (Springer-Verlag, Berlin, 1983).CrossRefGoogle Scholar
  11. 11.
    M. Leu, Trans. Am. Math. Soc. 358(10), 4225–4250 (2006).CrossRefGoogle Scholar
  12. 12.
    G. Olafsson and H. Schlichtkrull, Adv. Math. 218(1), 202–215 (2008).MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    R. Paley and N. Wiener, Fourier Transform in the Complex Domain (Am. Math. Soc. Coll. Publ., New York, 1934).Google Scholar
  14. 14.
    L. Schwartz, Commun. Sém. Math. Univ. Lund., 196–206 (1952).Google Scholar
  15. 15.
    E. M. Stein, Ann. Math. 65(2), 582–592 (1957).zbMATHCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Institute of MathematicsCau Giay, HanoiVietnam
  2. 2.Hanoi State UniversityThanh Xuan, HanoiVietnam

Personalised recommendations