Doklady Mathematics

, 84:527 | Cite as

Diffusion processes on solvable groups of upper triangular 2×2 matrices and their approximation

  • V. D. KonakovEmail author
  • S. Menozzi
  • S. A. Molchanov


Brownian Motion Random Walk DOKLADY Mathematic Nilpotent Group Solvable Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    H. Kesten, Math. Scand. 7, 146–156 (1959).MathSciNetzbMATHGoogle Scholar
  2. 2.
    A. Tempel’man, Ergodic Theorems for Group Actions: Informational and Thermodynamical Aspects (Kluwer, Dordrecht, 1992).zbMATHGoogle Scholar
  3. 3.
    Ch. Pittet and L. Saloff-Coste, J. Europ. Math. Soc. 5, 313–342 (2003).MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    H. P. McKean, Stochastic Integrals (Academic, New York, 1969).zbMATHGoogle Scholar
  5. 5.
    M. Ibero, Bull. Sci. Math. 100, 175–191 (1976).MathSciNetzbMATHGoogle Scholar
  6. 6.
    M. Yor, Adv. Appl. Prob. 24, 509–531 (1992).MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    F. I. Karpelevich, V. N. Tutubalin, and M. G. Shur, Teor. Veroyat. Ee Primen. 4, 399–402 (1959).Google Scholar
  8. 8.
    J. C. Gruet, Stoch. Rep. 56, 53–61 (1996).MathSciNetzbMATHGoogle Scholar
  9. 9.
    I. S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Series, and Products (Academic, New York, 2000).Google Scholar
  10. 10.
    S. Molchanov and B. Vainberg, in Around the Research of Vladimir Maz’ya, Vol. 3: Analysis and Applications (Springer-Verlag, Berlin, 2010), pp. 201–246.Google Scholar
  11. 11.
    T. Szabados and B. Székely, Period. Math. Hung. 51, 79–98 (2005).zbMATHCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Mechanics and Mathematics FacultyMoscow State UniversityMoscowRussia
  2. 2.University Paris-7ParisFrance
  3. 3.University of North Carolina in CharlotteCharlotteUSA

Personalised recommendations