Skip to main content

On quadrilateral orbits in planar billiards

This is a preview of subscription content, access via your institution.

References

  1. 1.

    V. Ivrii, “The Second Term of the Spectral Asymptotics for a Laplace-Beltrami Operator on Manifolds with Boundary,” Func. Anal. Appl. 14, 98–106 (1980).

    Article  MathSciNet  Google Scholar 

  2. 2.

    P. K. Rashevsky, Geometrical Theory of Partial Differential Equations (OGIZ Gostehizdat, Moscow, 1947).

    Google Scholar 

  3. 3.

    M. R. Rychlik, “Periodic Points of the Billiard Ball Map in a Convex Domain,” J. Diff. Geom. 30, 191–205 (1989).

    MATH  MathSciNet  Google Scholar 

  4. 4.

    Ya. B. Vorobets, “On the Measure of the Set of Periodic Points of a Billiard,” Math. Notes 55, 455–460 (1994) [Mat. Zamet. 55, 25–35 (1994)].

    Article  MathSciNet  Google Scholar 

  5. 5.

    H. Weyl, Gesammelte Abhandlungen (Springer-Verlag, Berlin, 1968).

    MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. A. Glutsyuk.

Additional information

Published in Russian in Doklady Akademii Nauk, 2011, Vol. 438, No. 5, pp. 590–592.

The article was translated by the authors.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Glutsyuk, A.A., Kudryashov, Y.G. On quadrilateral orbits in planar billiards. Dokl. Math. 83, 371–373 (2011). https://doi.org/10.1134/S1064562411030343

Download citation

Keywords

  • Periodic Orbit
  • Analytic Continuation
  • Smooth Boundary
  • Periodic Point
  • Measure Zero