Skip to main content
Log in

Oscillations of a Wind Power Plant with Several Moving Masses Using the Galloping Effect

  • MATHEMATICAL MODELING
  • Published:
Journal of Computer and Systems Sciences International Aims and scope

Abstract

We consider a chain of several bodies that can move translationally along a horizontal line. The neighboring bodies are connected to each other by springs. One end of the chain is fixed, and on the other there is a body, which is a rectangular parallelepiped of a square section. The system is placed in a horizontal stationary medium flow perpendicular to the specified straight line. Under the assumption that the flow affects only the parallelepiped, the dynamics of this system are studied as a potential working element of an oscillatory wind power plant using the galloping effect. For a different number of bodies in a chain, different values of flow velocity and external load, periodic regimes in the system are studied. It is shown, in particular, that an increase in the number of bodies in a chain makes it possible to increase the maximum power that can be obtained using the device and to reduce the critical speed at which oscillations occur. A scheme for regulating the load resistance is proposed, aimed at ensuring the transition to an oscillatory mode with maximum power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. J. P. Den Hartog, “Transmission line vibration due to sleet,” Trans. AIEE 51, 1074–1086 (1932).

    Google Scholar 

  2. G. V. Parkinson and N. P. H. Brooks, “On the aeroelastic instability of bluff cylinders,” ASME. J. Appl. Mech. 28 (2), 252–258 (1961). https://doi.org/10.1115/1.3641663

    Article  Google Scholar 

  3. G. V. Parkinson and J. D. Smith, “The square prism as an aeroelastic non-linear oscillator,” Q. J. Mech. Appl. Math. 17 (2), 225–239 (1964). https://doi.org/10.1093/qjmam/17.2.225

    Article  Google Scholar 

  4. S. C. Luo, Y. T. Chew, and Y. T. Ng, “Hysteresis phenomenon in the galloping oscillation of a square cylinder,” J. Fluids Struct. 18 (1), 103–118 (2003). https://doi.org/10.1016/S0889-9746(03)00084-7

    Article  Google Scholar 

  5. A. Barrero-Gil, A. Sanz-Andres, and G. Alonso, “Hysteresis in transverse galloping: The role of the inflection points,” J. Fluids Struct. 25 (6), 1007–1020 (2009). https://doi.org/10.1016/j.jfluidstructs.2009.04.008

    Article  Google Scholar 

  6. V. D. Lyusin and A. N. Ryabinin, “On the galloping of prisms in a gas or liquid flow,” Tr. TsNII im. Akad. A.N. Krylova, 53 (337), 79–84 (2010).

    Google Scholar 

  7. P. W. Bearman, I. S. Gartshore, D. J. Maull, and G. V. Parkinson, “Experiments on flow-induced vibration of a square-section cylinder,” J. Fluids Struct. 1 (1), 19–34 (1987). https://doi.org/10.1016/s0889-9746(87)90158-7

    Article  Google Scholar 

  8. M. Sarioglu, Y. E. Akansu, and T. Yavuz, “Flow around a rotatable square cylinder-plate body,” AIAA J. 44 (5), 1065–1072 (2006). https://doi.org/10.2514/1.18069

    Article  Google Scholar 

  9. G.-Z. Gao and L.-D. Zhu, “Nonlinear mathematical model of unsteady galloping force on a rectangular 2:1 cylinder,” J. Fluids Struct. 70, 47–71 (2017). https://doi.org/10.1016/j.jfluidstructs.2017.01.013

    Article  Google Scholar 

  10. M. Abdel-Rohman, “Design of tuned mass dampers for suppression of galloping in tall prismatic structures,” J. Sound Vib. 171 (3), 289–299 (1994). https://doi.org/10.1006/jsvi.1994.1121

    Article  Google Scholar 

  11. V. Gattulli, F. Di Fabio, and A. Luongo, “Simple and double Hopf bifurcations in aeroelastic oscillators with tuned mass dampers,” J. Franklin Inst. 338, 187–201 (2001). https://doi.org/10.1016/S0016-0032(00)00077-6

    Article  MathSciNet  Google Scholar 

  12. M. M. Selwanis, G. R. Franzini, C. Beguin, and F. P. Gosselin, “Wind tunnel demonstration of galloping mitigation with a purely nonlinear energy sink,” J. Fluids Struct. 100, 103169 (2021). https://doi.org/10.1016/j.jfluidstructs.2020.103169

  13. A. Barrero-Gil, G. Alonso, and A. Sanz-Andres, “Energy harvesting from transverse galloping,” J. Sound Vib. 329, 2873–2883 (2010). https://doi.org/10.1016/J.JSV.2010.01.028

    Article  Google Scholar 

  14. H. L. Dai, A. Abdelkefi, U. Javed, and L. Wang, “Modeling and performance of electromagnetic energy harvesting from galloping oscillations,” Smart Mater. Struct. 24 (4), 045012 (2015). https://doi.org/10.1088/0964-1726/24/4/045012

  15. P. Hemon, X. Amandolese, and T. Andrianne, “Energy harvesting from galloping of prisms: A wind tunnel experiment,” J. Fluids Struct. 70, 390–402 (2017). https://doi.org/10.1016/j.jfluidstructs.2017.02.006

    Article  Google Scholar 

  16. U. Javed, A. Abdelkefi, and I. Akhtar, “An improved stability characterization for aeroelastic energy harvesting applications,” Commun. Nonlinear Sci. Numer. Simul. 36, 252–265 (2016). https://doi.org/10.1016/j.cnsns.2015.12.001

    Article  Google Scholar 

  17. T. Tan and Z. Yan, “Analytical solution and optimal design for galloping-based piezoelectric energy harvesters,” Appl. Phys. Lett. 109, 253902 (2016). https://doi.org/10.1063/1.4972556

  18. K. F. Wang, B. L. Wang, Y. Gao, and J. Y. Zhou, “Nonlinear analysis of piezoelectric wind energy harvesters with different geometrical shapes,” Arch. Appl. Mech. 90, 721–736 (2020). https://doi.org/10.1007/s00419-019-01636-8

    Article  Google Scholar 

  19. D. Zhao, X. Hu, T. Tan, Zh. Yan, and W. Zhang, “Piezoelectric galloping energy harvesting enhanced by topological equivalent aerodynamic design,” Energy Conv. Manage. 222, 113260 (2020). https://doi.org/10.1016/j.enconman.2020.113260

  20. M. Zhang, A. Abdelkefi, H. Yu, X. Ying, O. Gaidai, and J. Wang, “Predefined angle of attack and corner shape effects on the effectiveness of square-shaped galloping energy harvesters,” Appl. Energy 302, 117522 (2021). https://doi.org/10.1016/j.apenergy.2021.117522

  21. D. Vicente-Ludlam, A. Barrero-Gil, and A. Velazquez, “Enhanced mechanical energy extraction from transverse galloping using a dual mass system,” J. Sound Vib. 339, 290–303 (2015). https://doi.org/10.1016/j.jsv.2014.11.034

    Article  Google Scholar 

  22. D. Karlicic, M. Cajic, and S. Adhikari, “Dual-mass electromagnetic energy harvesting from galloping oscillations and base excitation,” Proc. Inst. Mech. Eng., Part C 235 (20), 4768–4783 (2021). https://doi.org/10.1177/0954406220948910

    Article  Google Scholar 

  23. Yu. D. Selyutsky, “Dynamics of a wind turbine with two moving masses using the galloping effect,” Mech. Solids 58 (2), 426–438 (2023). https://doi.org/10.3103/S0025654422600507

    Article  Google Scholar 

  24. M. Dosaev, “Interaction between internal and external friction in rotation of vane with viscous filling,” Appl. Math. Modell. 68, 21–28 (2019). https://doi.org/10.1016/j.apm.2018.11.002

    Article  MathSciNet  Google Scholar 

  25. Q. Wang, J. Goosen, and F. Van Keulen, “A predictive quasi-steady model of aerodynamic loads on flapping wings,” J. Fluid Mech. 800, 688–719 (2016). https://doi.org/10.1017/jfm.2016.413

    Article  MathSciNet  Google Scholar 

  26. M. K. Abohamer, J. Awrejcewicz, R. Starosta, T. S. Amer, and M. A. Bek, “Influence of the motion of a spring pendulum on energy-harvesting devices,” Appl. Sci. 11, 8658 (2021). https://doi.org/10.3390/app11188658

    Article  Google Scholar 

  27. L. A. Klimina, “Method for forming autorotations in controllable mechanical system with two degrees of freedom,” J. Comput. Syst. Sci. Int. 59 (6), 817–827 (2020).

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, grant no. 22-29-00472.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. D. Selyutskiy.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lokshin, B.Y., Selyutskiy, Y.D. Oscillations of a Wind Power Plant with Several Moving Masses Using the Galloping Effect. J. Comput. Syst. Sci. Int. 62, 838–849 (2023). https://doi.org/10.1134/S1064230723050118

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064230723050118

Navigation