Skip to main content
Log in

Synthesis of Parameters of Proportionally-Integral and Proportionally-Integral-Differential Controllers for Stationary Linear Objects with Nonzero Initial Conditions

  • CONTROL IN DETERMINISTIC SYSTEMS
  • Published:
Journal of Computer and Systems Sciences International Aims and scope

Abstract

The problem of the synthesis of proportional-integrating (PI) and proportional-integral-differentiating (PID) controllers in a nonstandard formulation is considered. For a linear one-dimensional control object with nonzero initial conditions, it is required to find a controller that is optimal in the sense of a quadratic functional of the state of the object with a regularization additive in control. The synthesis procedure is a solution of the corresponding quadratic optimization problem using a method similar to the conjugate gradient method (the direction at each step is calculated by the conjugate gradient method, and the step length is calculated by the Armijo rule). Numerical examples illustrate the effectiveness of the proposed algorithm in the synthesis of controllers for models of control objects that are common in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. J. C. Maxwell, “On governors,” Proc. R. Soc. London 16, 270–283 (1868).

    Article  Google Scholar 

  2. M. A. Aizerman, “Brief overview of the rise and development of the classical theory of regulation and control,” Avtom. Telemekh., No. 7, 6–18 (1993).

  3. J. G. Ziegler and N. B. Nichols, “Optimum settings for automatic controllers,” Trans. ASME 64, 759–768 (1942).

    Google Scholar 

  4. K. J. Åström and T. Hägglund, Advanced PID Control (ISA, Research Triangle Park, N.C., 2006).

    Google Scholar 

  5. A. Visioli, Practical PID Control (Springer, London, 2006).

    Google Scholar 

  6. L. Wang, PID Control System Design and Automatic Tuning using MATLAB/Simulink (Wiley-IEEE Press, 2020).

    Book  Google Scholar 

  7. A. O’Dwyer, Handbook of PI and PID Controller Tuning Rules (Imperial College Press, London, 2009).

    Book  Google Scholar 

  8. A. G. Aleksandrov and M. V. Palenov, “Adaptive PID controllers: State of the art and development prospects,” Autom. Remote Control (Engl. Transl.) 75 (2), 188–199 (2014).

  9. I. Podlubny, “Fractional-order systems and PI λ D μ-controllers,” IEEE Trans. Autom. Control 44 (1), 208–214 (1999).

    Article  MathSciNet  Google Scholar 

  10. M. Hast, K. J. Åström, B. Bernhardsson, and S. Boyd, “PID design by convex–concave optimization,” in Proc. Eur. Control Conf. (ECC-2013), Zurich, Switzerland, 2013, pp. 4460–4465.

  11. S. Han, L. H. Keel, and S. P. Bhattacharyya, “PID controller design with an H criterion,” IFAC PapersOnLine 51 (4), 400–405 (2018).

    Article  Google Scholar 

  12. Q.-G. Wang, Z. Ye, W.-J. Cai, and C.-C. Hang, PID Control for Multivariable Processes (Springer, Berlin, 2008).

    Google Scholar 

  13. S. Boyd, M. Hast, and K. J. Åström, “MIMO PID tuning via iterated LMI restriction,” Int. J. Robust Nonlinear Control 26, 1718–1731 (2016).

    Article  MathSciNet  Google Scholar 

  14. H. Kwakernaak and R. Sivan, Linear Optimal Control Systems (Wiley-Interscience, London, 1972).

    Google Scholar 

  15. B. D. O. Anderson and J. B. Moore, Optimal Control. Linear Quadratic Methods (Prentice-Hall, New Jersey, 1989).

    Google Scholar 

  16. I. Fatkhullin and B. Polyak, “Optimizing static linear feedback: Gradient method,” SIAM J. Control Opt. 59 (51), 3887–3911 (2021).

    Article  MathSciNet  Google Scholar 

  17. B. T. Polyak and M. V. Khlebnikov, “New criteria for tuning PID controllers,” Avtom. Telemekh., No. 11, 62–82 (2022).

  18. B. T. Polyak, Introduction to Optimization (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

  19. L. Armijo, “Minimization of functions having Lipschitz continuous first partial derivatives,” Pac. J. Math. 16 (1), 1–3 (1966).

    Article  MathSciNet  Google Scholar 

  20. B. T. Polyak, M. V. Khlebnikov, and P. S. Shcherbakov, Control of Linear Systems Under External Disturbances: The Technique of Linear Matrix Inequalities (LENAND, Moscow, 2014) [in Russian].

    Google Scholar 

  21. D. P. Kim, Theory of Automatic Control, Vol. 2: Multidimensional, Nonlinear, Optimal, and Adaptive Systems (Fizmatlit, Moscow, 2004) [in Russian].

  22. K. J. Åström and T. Hägglund, “Benchmark systems for PID control,” IFAC Proc. Vol. 33 (4), 165–166 (2000).

  23. K. J. Åström, “Limitations on control system performance,” Eur. J. Control 6 (1), 2–20 (2000).

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work was partially supported by the Russian Science Foundation, project no. 21-71-30005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Shatov.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shatov, D.V. Synthesis of Parameters of Proportionally-Integral and Proportionally-Integral-Differential Controllers for Stationary Linear Objects with Nonzero Initial Conditions. J. Comput. Syst. Sci. Int. 62, 17–26 (2023). https://doi.org/10.1134/S1064230723010082

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064230723010082

Navigation