Skip to main content
Log in

Method of Quasi-Optimal Synthesis of Control Laws Based on the Reduction of the Lagrange Problem to the Isoperimetric Problem Using Asynchronous Variation

  • SYSTEMS THEORY AND GENERAL CONTROL THEORY
  • Published:
Journal of Computer and Systems Sciences International Aims and scope

Abstract

The solution of the problem of the structural synthesis of quasi-optimal control laws based on the reduction of the Lagrange problem to the isoperimetric problem is considered. The analysis of the variation of the extended action integral is based on the study of asynchronous (full) variation and leads to a boundary-value problem, the solution of which satisfies the condition for the maximum function of the generalized power and the requirement to fulfill the energy balance on the extreme trajectory. Based on the example of the problem of A.T. Fuller, it is shown that the set of quasi-optimal controls constructed using the developed method contains the optimal solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. L. I. Rozonoer, “The maximum principle of L. S. Pontryagin in the theory of optimal systems II,” Avtom. Telemekh. 20, 1441–1458 (1959).

    MathSciNet  Google Scholar 

  2. A. A. Krasovskii, Automatic Control Theory Handbook (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  3. L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, Mathematical Theory of Optimal Processes (Fizmatgiz, Moscow, 1983; Wiley, New York, 1962).

  4. E. S. Pyatnitskii, “Synthesis of hierarchical control systems for mechanical and electromechanical control systems based on the principle of decomposition,” Avtom. Telemekh., No. 1, 87–99 (1989).

  5. E. S. Pyatnitskii, “Controllability of classes of lagrangian systems with bounded controls,” Avtom. Telemekh., No. 12, 29–37 (1996).

  6. A. A. Kostoglotov, “A method for the identification of parameters of holonomic systems based on the technique of asynchronous variation,” J. Comput. Syst. Sci. Int. 42, 244 (2003).

    MathSciNet  MATH  Google Scholar 

  7. D. E. Okhotsimskii and T. M. Eneev, “Some variational problems associated with the launch of an artificial Earth satellite,” Usp. Fiz. Nauk 63, 5–32 (1957).

    Article  Google Scholar 

  8. Yu. F. Golubev, “The Okhotsimskii–Pontryagin method in control theory and analytical mechanics. Part I,” Mosc. Univ. Mech. Bull. 63, 133–138 (2008).

    Article  Google Scholar 

  9. V. S. Novoselov, Variational Methods in Mechanics (LGU, Leningrad, 1966) [in Russian].

    Google Scholar 

  10. N. I. Akhiezer, Lectures on the Calculus of Variations (Gostekhizdat, Moscow, 1955) [in Russian].

    Google Scholar 

  11. R. I. Trukhachev and V. V. Khomenyuk, Theory of Nonclassical Variational Problems (LGU, Leningrad, 1970) [in Russian].

    Google Scholar 

  12. A. I. Lur’e, Analytical Mechanics (GIFML, Moscow, 1961) [in Russian].

    Google Scholar 

  13. A. A. Kostoglotov, A. A. Kuznetsov, and S. V. Lazarenko, “Model synthesis of dynamic process with non-stationary disturbances based on maximum of generalized power function,” Mat. Model. 28 (12), 133–142 (2016).

    MathSciNet  MATH  Google Scholar 

  14. A. A. Kostoglotov and S. V. Lazarenko, “Synthesis of adaptive tracking systems based on the hypothesis of stationarity of the Hamiltonian on the switching hypersurface,” J. Commun. Technol. Electron. 62, 123 (2017).

    Article  Google Scholar 

  15. A. A. Kostoglotov, “Solution of Fuller’s problem on the basis of the joint Pontryagin–Hamilton–Ostrogradskii principle,” Autom. Control Comput. Sci. 41 (4), 179–187 (2007).

    Article  Google Scholar 

  16. R. Courant and D. Hilbert, Methods of Mathematical Physics (Wiley, New York, 1989), Vol. 1.

    Book  Google Scholar 

  17. I. B. Furtat, “Design of a control algorithm for objects with parametric uncertainty, disturbances, and input signal saturation,” Autom. Remote Control 78, 2178 (2017).

    Article  MathSciNet  Google Scholar 

  18. I. M. Anan’evskii and S. A. Reshmin, “Decomposition-based continuous control of mechanical systems,” J. Comput. Syst. Sci. Int. 53, 473 (2014).

    Article  MathSciNet  Google Scholar 

  19. G. Korn and T. Korn, Mathematical Handbook for Scientists and Engineers (McGraw-Hill, New York, 1961).

    MATH  Google Scholar 

  20. O. E. Maikova, “Suboptimal regimes in the Fuller problem,” Tr. Mat. Inst. Steklova 236, 226 (2002).

    MathSciNet  Google Scholar 

  21. Yu. V. Aldakimov, A. A. Melikyan, and G. V. Naumov, “Reconstruction of the regime in a one-parameter family of optimal control problems,” Prikl. Mat. Mekh. 65, 400 (2001).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Lazarenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kostoglotov, A.A., Lazarenko, S.V. Method of Quasi-Optimal Synthesis of Control Laws Based on the Reduction of the Lagrange Problem to the Isoperimetric Problem Using Asynchronous Variation. J. Comput. Syst. Sci. Int. 60, 843–852 (2021). https://doi.org/10.1134/S1064230721060113

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064230721060113

Navigation