Skip to main content
Log in

Optimal Control of Longitudinal Motion of an Elastic Rod Using Boundary Forces

  • CONTROL IN SYSTEMS WITH DISTRIBUTED PARAMETERS
  • Published:
Journal of Computer and Systems Sciences International Aims and scope

Abstract

This study is devoted to the issues of controllability and optimization of oscillatory motions of dynamic systems with distributed parameters. The longitudinal displacements of a thin rectilinear elastic rod are considered. Based on the method of integrodifferential relations proposed by the authors, a generalized formulation of the initial-boundary value problem is given, the solution of which is sought with respect to the kinematic and dynamic variables in a Sobolev energy space. For the case of a uniform rod controlled by external forces applied at both ends, the critical time for which the system can be brought to the rest is determined and the impossibility for arbitrary initial conditions of bringing the points of the rod to the zero state is shown. For fixed time intervals longer than the critical one, the problem is posed to optimally bring the system to the zero state. In this case, the minimized functional is the mean mechanical energy stored in the rod during motion. It is shown that using the d’Alembert representation (in the form of traveling waves), taking into account the properties of the generalized solution, the two-dimensional in space and time control problem is reduced to the classical one-dimensional quadratic variational problem with fixed ends, which is specified with respect to two unknown d’Alembert functions. Using the methods of the calculus of variations, the optimal control and the corresponding motion of the rod are found explicitly. The dependence of the mean energy stored in the system on the control time is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations (Springer, Berlin, 1971).

    Book  Google Scholar 

  2. A. G. Butkovsky, Distributed Control Systems (Elsevier, New York, 1969).

    Google Scholar 

  3. N. U. Ahmed and K. L. Teo, Optimal Control of Distributed Parameter Systems (North-Holland, Amsterdam, 1981).

    MATH  Google Scholar 

  4. W. Krabs, Optimal Control of Undamped Linear Vibrations (Heldermann, Lemgo, 1995).

    MATH  Google Scholar 

  5. J. E. Lagnese, G. Leugering, and E. J. P. G. Schmidt, Modeling, Analysis and Control of Dynamic Elastic Multi-Link Structures (Birkhäuser, Boston, 1984).

    MATH  Google Scholar 

  6. G. Leugering, “A domain decomposition of optimal control problems for dynamic networks of elastic strings,” Comput. Optimiz. Appl. 16, 5–29 (2000).

    Article  MathSciNet  Google Scholar 

  7. M. Gugat, “Optimal control of networked hyperbolic systems: Evaluation of derivatives,” Adv. Model. Optimiz. 7, 9–37 (2005).

    MathSciNet  MATH  Google Scholar 

  8. S. P. Banks, State-Space and Frequency-Domain Methods in the Control of Distributed Parameter Systems (Peregrinus, London, 1983).

    MATH  Google Scholar 

  9. R. F. Curtain and H. J. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory (Springer, New York, 1995).

    Book  Google Scholar 

  10. F. L. Chernousko, “Control of elastic systems by bounded distributed forces,” Appl. Math. Comput. 78, 103–110 (1996).

    MathSciNet  MATH  Google Scholar 

  11. M. Gerdts, G. Greif, and H. J. Pesch, “Numerical optimal control of the wave equation: Optimal boundary control of a string to rest in finite time,” Math. Comput. Simul. 79, 1020–1032 (2008).

    Article  MathSciNet  Google Scholar 

  12. A. I. Ovseevich and A. K. Fedorov, “Asymptotically optimal control for a simplest distributed system,” Dokl. Math. 95, 194–197 (2017).

    Article  Google Scholar 

  13. I. V. Romanov and A. S. Shamaev, “On the problem of precise control of the system obeying the delay string equation,” Autom. Remote Control 74, 1810 (2013).

    Article  MathSciNet  Google Scholar 

  14. I. V. Romanov and A. S. Shamaev, “On a boundary controllability problem for a system governed by the two-dimensional wave equation,” J. Comput. Syst. Sci. Int. 58, 105 (2019).

    Article  Google Scholar 

  15. R. W. Lewis, P. Nithiarasu, and K. N. Seetharamu, Fundamentals of the Finite Element Method for Heat and Fluid Flow (Wiley, Chichester, 2004).

    Book  Google Scholar 

  16. M. J. Balas, “Finite-dimensional control of distributed parameter systems by galerkin approximation of infinite dimensional controllers,” J. Math. Anal. Appl. 114, 17–36 (1986).

    Article  MathSciNet  Google Scholar 

  17. P. D. Christofides, Nonlinear and Robust Control of PDE Systems: Methods and Applications to Transport-Reaction Processes (Birkhäuser, Boston, 2001).

    Book  Google Scholar 

  18. T. Belytschko, Y. Y. Lu, and L. Gu, “Element-free Galerkin method,” Int. J. Numer. Methods Eng. 37, 229–256 (1994).

    Article  MathSciNet  Google Scholar 

  19. S. N. Atluri and T. Zhu, “A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics,” Comput. Mech. 22, 117–127 (1998).

    Article  MathSciNet  Google Scholar 

  20. P. B. Bochev and M. D. Gunzburger, Least-Squares Finite Element Methods (Springer, New York, 2009).

    MATH  Google Scholar 

  21. L. D. Akulenko and A. A. Gavrikov, “Controlling the one-dimensional motion of hybrid vibrational rod systems,” J. Comput. Syst. Sci. Int. 57, 349 (2018).

    Article  MathSciNet  Google Scholar 

  22. G. V. Kostin and V. V. Saurin, Dynamics of Solid Structures. Methods Using Integrodifferential Relations (De Gruyter, Berlin, 2018).

    Book  Google Scholar 

  23. G. V. Kostin, “Modelling and optimization of controlled longitudinal motions for an elastic rod based on the Ritz method,” in Proceedings of the 14th International Conference on Stability and Oscillations of Nonlinear Control Systems (Pyatnitskiy’s Conference) STAB (IEEE, Moscow, 2018), pp. 1–4. https://doi.org/10.1109/STAB.2018.8408369

  24. G. Kostin, “Verified solution to optimal control problems of elastic rod motion based on the Ritz method,” Acta Cybern. 24, 393–408 (2020). https://doi.org/10.14232/actacyb.24.3.2020.7

    Article  MathSciNet  MATH  Google Scholar 

  25. V. A. Il’in and E. I. Moiseev, “Optimization of boundary controls of string vibrations,” Russ. Math. Surv. 60, 1093 (2005).

    Article  MathSciNet  Google Scholar 

  26. E. I. Moiseev and A. A. Frolov, “Boundary control of string vibrations in a subcritical time under a medium resistance at the right end,” Differ. Equations 55, 541 (2019).

    Article  MathSciNet  Google Scholar 

  27. M. Gugat, Optimal Boundary Control and Boundary Stabilization of Hyperbolic Systems (Springer, Berlin, 2015).

    Book  Google Scholar 

  28. M. Gugat, E. Trelat, and E. Zuazua, “Optimal Neumann control for the 1D wave equation: Finite horizon, infinite horizon, boundary tracking terms and the turnpike property,” Syst. Control Lett. 90, 61–70 (2016).

    Article  MathSciNet  Google Scholar 

  29. C. Schwab, P- and hp- Finite Element Methods: Theory and Applications in Solid and Fluid Mechanics. Numerical Mathematics and Scientific Computation (Oxford Univ. Press, New York, 1998).

    MATH  Google Scholar 

  30. A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics (Nauka, Moscow, 1977; Dover, New York, 2011)

  31. S. G. Mikhlin, Course of Mathematical Physics (Nauka, Moscow, 1968) [in Russian].

    Google Scholar 

  32. K. Yoshida, Functional Analysis (Springer, Berlin, 1965).

    Book  Google Scholar 

  33. M. Giaquinta and S. Hildebrandt, Calculus of Variations. I (Springer, Berlin, 2004).

    Book  Google Scholar 

Download references

Funding

This study was supported by a state assignment (state registration number AAAA-A20-120011690138-6) and was partially financially supported by the Russian Foundation for Basic Research (grant nos. 19-01-00173 and 21-51-12004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Kostin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gavrikov, A.A., Kostin, G.V. Optimal Control of Longitudinal Motion of an Elastic Rod Using Boundary Forces. J. Comput. Syst. Sci. Int. 60, 740–755 (2021). https://doi.org/10.1134/S1064230721050099

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064230721050099

Navigation