Skip to main content
Log in

Optimization of the Processes of Deployment and Shape Generation for a Transformable Space-Based Reflector

  • CONTROL SYSTEMS OF MOVING OBJECTS
  • Published:
Journal of Computer and Systems Sciences International Aims and scope

Abstract

Mathematical models for the deployment and adjustment of a large-sized space-based reflector are presented. Optimal control algorithms are developed for the automatic deployment of antenna elements and tuning of a radio-reflecting mesh. The results of numerical modeling are presented, showing the advantage of using the algorithm for correcting the parameters of the control structure in comparison with the classical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. S. V. Ponomarev, “Transformable reflectors of spacecraft antennas,” Vestn. Tomsk. Univ., Mat. Mekh., No. 4, 110–119 (2011).

  2. L. V. Chuikina, V. G. Porpylev, and D. O. Chuikin, “Trends in the development of disclosure drives,” in Proceedings of the 14th International Conference Reshetnev Readings Dedicated to the Memory of the General Designer of Rocket and Space Systems Academician M. F. Reshetnev, Ed. by Yu. Yu. Loginov (Sib. Gos. Aerokosm. Univ., Krasnoyarsk, 2010), Part 1, pp. 93–94.

  3. D. V. Grinevich, “Study of the dynamics of expanding extended structures,” Vopr. Elektromekh., Tr. VNIIEM 134, 37–42 (2013).

    Google Scholar 

  4. G. V. Kabdulin, V. A. Komkov, V. M. Mel’nikov, and B. N. Kharlov, “Dynamics of controlled deployment by centrifugal forces of space structures with kinetic moment compensation,” Kosmonavt. Raketostr., No. 1, 189–198 (2009).

  5. Yu. F. Golubev and A. E. Ditkovskii, “Controlled motion of an elastic manipulator,” J. Comput. Syst. Sci. Int. 40, 1004 (2001).

    MATH  Google Scholar 

  6. L. D. Akulenko and A. A. Gavrikov, “Controlling the one-dimensional motion of hybrid vibrational rod systems,” J. Comput. Syst. Sci. Int. 57, 349 (2018).

    Article  MathSciNet  Google Scholar 

  7. S. A. Kabanov, B. A. Zimin, and F. V. Mitin, “Development and research of mathematical models of deployment of mobile parts of transformable space construction. Part 1,” Mekhatron. Avtomatiz. Upravl. 20, 51–64 (2020).

    Google Scholar 

  8. S. A. Kabanov, B. A. Zimin, and F. V. Mitin, “Development and research of mathematical models of deployment of mobile parts of transformable space construction. Part 2,” Mekhatron. Avtomatiz. Upravl. 21, 117–128 (2020).

    Google Scholar 

  9. A. A. Krasovskii, “The theory of a self-organizing optimal controller of binomial type in the deterministic-stochastic approximation,” Avtom. Telemekh., No. 5, 97–112 (1999).

  10. A. N. Krylov, About the Calculation of Beams Lying on an Elastic Foundation (Akad. Nauk SSSR, Moscow, 1931) [in Russian].

    Google Scholar 

  11. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 7: Theory of Elasticity (Fizmatlit, Moscow, 2003; Pergamon, New York, 1986).

  12. A. P. Markeev, Dynamics of a Body in Contact with a Solid Surface (Nauka, Moscow, 1992) [in Russian].

    MATH  Google Scholar 

  13. A. A. Nikol’skii, Precise Two-Channel Servo Drives with Piezo Compensators (Energoatomizdat, Moscow, 1988) [in Russian].

    Google Scholar 

  14. A. I. Vol’dek, Electric Machines, The School-Book (Energiya, Leningrad, 1978) [in Russian].

    Google Scholar 

  15. R. P. Fedorenko, Approximate Solution of Optimal Control Problems (Nauka, Moscow, 1978) [in Russian].

    MATH  Google Scholar 

  16. Handbook on Automatic Control Theory, Ed. by A. A. Krasovskii (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  17. V. V. Malyshev and D. S. Kabanov, “An algorithm of correction of autonomous underwater vehicle control structure for attainability domain construction,” Izv. Vyssh. Uchebn. Zaved., Priborostr. 55 (7), 21–27 (2012).

    Google Scholar 

  18. S. A. Kabanov, “Dynamic system optimization using correction of control structure parameters,” Vest. SPbGU, Ser. 1: Mat. Mekh. Astron. 1 (2), 254–260 (2014).

    Google Scholar 

  19. D. S. Kabanov, “Optimal real-time control algorithm design for multimode automatic underwater vehicle,” Mekhatron., Avtomatiz., Upravl., No. 1, 60–66 (2014).

  20. Yu. N. Rabotonov, Strength of Materials (Fizmatgiz, Moscow, 1962) [in Russian].

  21. S. A. Kabanov, Control of Systems on Predictive Models (SPbGU, St. Petersburg, 1997) [in Russian].

  22. N. N. Lebedev, Special Functions and their Application (Lan’, St. Petersburg, 2010) [in Russian].

  23. S. A. Kabanov, F. V. Mitin, A. I. Krivushov, and E. A. Ulybushev, “Control of a piezo actuator to adjust the reflective surface of the space-based reflector,” Russ. Aeronaut. 61, 629–635 (2018).

    Article  Google Scholar 

  24. F. Mitin and A. Krivushov, “Application of optimal control algorithm for DC motor,” in Proceedings of the 29th DAAAM International Symposium, Vienna, Austria, 2018, pp. 0762–0766.

  25. S. A. Kabanov, “Combined synthesis of optimal control as a hierarchical differential game,” Dokl. Akad. Nauk 372, 317–318 (2000).

    MathSciNet  MATH  Google Scholar 

  26. V. V. Malyshev, M. N. Krasil’shchikov, and V. I. Karlov, Optimization of Surveillance and Control of Aircraft (Mashinostroenie, Moscow, 1989) [in Russian].

    MATH  Google Scholar 

  27. A. A. Krasovskii, “Adaptive optimal controller with variable observer order and extrapolation time,” Avtom. Telemekh., No. 1, 97–111 (1994).

  28. S. A. Kabanov, “Self-organization as an instrument of control for the solution of optimization problems in the socio-economic sphere,” J. Comput. Syst. Sci. Int. 38, 501 (1999).

    MATH  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (grant 20-08-00646a).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. A. Kabanov or F. V. Mitin.

Additional information

Translated by E. Seifina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kabanov, S.A., Mitin, F.V. Optimization of the Processes of Deployment and Shape Generation for a Transformable Space-Based Reflector. J. Comput. Syst. Sci. Int. 60, 283–302 (2021). https://doi.org/10.1134/S1064230720060052

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064230720060052

Navigation