Skip to main content

Analytical Quasi-Optimal Solution of the Slew Problem for an Axially Symmetric Rigid Body with a Combined Performance Index

Abstract

The results of the analytical and numerical solution of the problem of controlling the rotational motion of an axially symmetric rigid body with a combined performance index of the control process are presented using quaternions. The performance index includes the duration of the control, impulse of the squared angular momentum magnitude, and impulse of the magnitude of the control torque applied to the body. The control must take an axisymmetric rigid body from a state of rest to another state of rest.

This is a preview of subscription content, access via your institution.

Fig. 1.

REFERENCES

  1. 1

    F. Li and P. M. Bainum, “Numerical approach for solving rigid spacecraft minimum time attitude maneuvers,” J. Guidance, Contr., Dyn. 13 (1) (1990).

  2. 2

    V. N. Branets and I. P. Shmyglevskii, Application of Quaternions in Problems of Orientation of a Rigid Body (Nauka, Moscow, 1973) [in Russian].

    MATH  Google Scholar 

  3. 3

    A. V. Molodenkov and Ya. G. Sapunkov, “Analytical solution of the optimal slew problem for an axisymmetric spacecraft in the class of conical motions,” J. Comput. Syst. Sci. Int. 55, 969 (2016).

    MathSciNet  Article  Google Scholar 

  4. 4

    A. V. Molodenkov and Ya. G. Sapunkov, “Analytical solution of the minimum time slew maneuver problem for an axially symmetric spacecraft in the class of conical motions,” J. Comput. Syst. Sci. Int. 57, 302 (2018).

    MathSciNet  Article  Google Scholar 

  5. 5

    M. V. Levskii, “Pontryagin’s maximum principle in optimal control problems of orientation of a spacecraft,” J. Comput. Syst. Sci. Int. 47, 974 (2008).

    MathSciNet  Article  Google Scholar 

  6. 6

    A. V. Molodenkov and Ya. G. Sapunkov, “Optimal control of rigid body’s rotation movement with a combined quality criterion,” J. Comput. Syst. Sci. Int. 58, 382 (2019).

    Article  Google Scholar 

  7. 7

    Ya. G. Sapunkov and A. V. Molodenkov, “The investigation of characteristics of distant sounding system of the Earth with the help of cosmic device,” Mekhatron., Avtomatiz., Upravl., No. 6, (2008).

  8. 8

    V. N. Branets, M. B. Chertok, and Yu. V. Kaznacheev, “Optimal rotation of a solid with one axis of symmetry,” Kosm. Issled. 22 (3) (1984).

  9. 9

    M. V. Levskii, “Quadratic optimal control in reorienting a spacecraft in a fixed time period in a dynamic problem statement,” J. Comput. Syst. Sci. Int. 57, 131 (2018).

    MathSciNet  Article  Google Scholar 

  10. 10

    M. V. Levskii, “Analytic controlling reorientation of a spacecraft using a combined criterion of optimality,” J. Comput. Syst. Sci. Int. 57, 283 (2018).

    MathSciNet  Article  Google Scholar 

  11. 11

    L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The Mathematical Theory of Optimal Processes (Nauka, Moscow, 1961; Wiley, New York, London, 1962).

  12. 12

    M. D. Griffin and J. R. French, Space Vehicle Design,AIAA Education Series (Reston, Virginia, 2004).

    Book  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 19-01-00205.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. V. Molodenkov.

Additional information

Translated by A. Klimontovich

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Molodenkov, A.V., Sapunkov, Y.G. Analytical Quasi-Optimal Solution of the Slew Problem for an Axially Symmetric Rigid Body with a Combined Performance Index. J. Comput. Syst. Sci. Int. 59, 347–357 (2020). https://doi.org/10.1134/S1064230720030107

Download citation