Method for Parametric Optimization in Problems of the Multichannel Control of Systems with Distributed Parameters

  • E. Ya. RapoportEmail author


We propose a constructive technology for solving parametrizable problems of multichannel optimal control in systems with distributed parameters under conditions of a given accuracy of uniform approximating the resultant spatial distribution of the controlled variable to the desired state. The developed technique uses the parametrization procedure of the sought control actions and the subsequent reduction to the special form of the task of semi-infinite optimization, which is solved by the scheme of the alternance method proposed earlier; this scheme is generalized to the investigated situation. We present an example (which is of interest by itself) of time-optimization of the process of nonstationary heat conductivity with two boundary control actions.



This work was financially supported by the Russian Foundation for Basic Research (project no. 18-08-00048).


  1. 1.
    A. G. Butkovskii, The Theory of Optimal Control of Systems with Distributed Parameters (Nauka, Moscow, 1965) [in Russian].Google Scholar
  2. 2.
    A. G. Butkovskii, Control Methods for Distributed Systems (Nauka, Moscow, 1975) [in Russian].Google Scholar
  3. 3.
    F. P. Vasil’ev, Optimization Methods (Faktorial, Moscow, 2002) [in Russian].Google Scholar
  4. 4.
    E. Ya. Rapoport, Optimal Control of Systems with Distributed Parameters (Vyssh. Shkola, Moscow, 2009) [in Russian].Google Scholar
  5. 5.
    E. Ya. Rapoport, Analysis and Synthesis of Control Systems with Distributed Parameters (Vyssh. Shkola, Moscow, 2005) [in Russian].Google Scholar
  6. 6a.
    E. Ya. Rapoport, “Chebyshev approximations in problems of parametric optimization of controlled processes I-III,” Avtom. Telemekh., No. 2, 60–67 (1992);Google Scholar
  7. 6b.
    Avtom. Telemekh., No. 3, 59–64 (1992);Google Scholar
  8. 6c.
    Avtom. Telemekh., No. 4, 49–56 (1992).Google Scholar
  9. 7.
    E. Ya. Rapoport, “Alternance properties of optimal solutions and computational algorithms in problems of semi-infinite optimization of controlled systems,” J. Comput. Syst. Sci. Int. 35, 581 (1996).zbMATHGoogle Scholar
  10. 8.
    E. Ya. Rapoport, Alternance Method in Optimization Applications (Nauka, Moscow, 2000) [in Russian].zbMATHGoogle Scholar
  11. 9.
    E. Ya. Rapoport, “The alternance method in semi-infinite optimization problems,” in Nonlinear Control Theory and Its Applications: Dynamics, Control, Optimization, Ed. by V. M. Matrosov, S. N. Vasil’ev, and A. I. Moskalenko (Fizmatlit, Moscow, 2003), pp. 164–200 [in Russian].Google Scholar
  12. 10.
    Yu. E. Pleshivtseva and E. Ya. Rapoport, “The successive parameterization method of control actions in boundary value optimal control problems for distributed parameter systems,” J. Comput. Syst. Sci. Int. 48, 351 (2009).MathSciNetCrossRefzbMATHGoogle Scholar
  13. 11.
    L. Collatz and W. Krabs, Approximationstheorie; Tschebyscheffsche Approximation mit Anwendungen (B. G. Teubner, Stuttgart, 1973).zbMATHGoogle Scholar
  14. 12.
    V. A. Makovskii, Dynamics of Metallurgical Objects with Distributed Parameters (Metallurgiya, Moscow, 1971) [in Russian].Google Scholar
  15. 13.
    W. H. Ray, Advanced Process Control (McGraw-Hill, New York, 1981).Google Scholar
  16. 14.
    A. G. Butkovskii, Structural Theory of Distributed Systems (Nauka, Moscow, 1977) [in Russian].Google Scholar
  17. 15.
    I. Begimov, A. G. Butkovskii, and V. L. Rozhanskii, “Structural representation of physically inhomogeneous systems,” Avtom. Telemekh., No. 9, 25–35 (1982).Google Scholar
  18. 16.
    I. Begimov, A. G. Butkovskii, and V. L. Rozhanskii, “Structural representation of two-dimensional inhomogeneous systems with distributed parameters,” Avtom. Telemekh., No. 5, 5–16 (1984).Google Scholar
  19. 17.
    N. D. Demidenko, Controlled Distributed Systems (Nauka, Novosibirsk, 1999) [in Russian].Google Scholar
  20. 18.
    E. Ya. Rapoport, “Open-loop controllability of interconnected heterogeneous systems with distributed parameters,” J. Comput. Syst. Sci. Int. 56, 561 (2017).MathSciNetCrossRefzbMATHGoogle Scholar
  21. 19.
    A. D. Polyanin, Handbook of Linear Equations of Mathematical Physics (Fizmatlit, Moscow, 2001) [in Russian].zbMATHGoogle Scholar
  22. 20.
    E. Ya. Rapoport, Structural Modeling of Objects and Control Systems with Distributed Parameters (Vyssh. Shkola, Moscow, 2003) [in Russian].Google Scholar
  23. 21.
    Yu. V. Egorov, “Necessary conditions for optimality in a Banach space,” Mat. Sb. (Nov. Ser.) 64 (1), 79–101 (1964).Google Scholar
  24. 22.
    E. Ya. Rapoport, Optimization of Metal Induction Heating Processes (Metallurgiya, Moscow, 1993) [in Russian].Google Scholar
  25. 23.
    E. Rapoport and Yu. Pleshivtseva, Optimal Control of Induction Heating Processes (CRC, Taylor Francis Group, Boca Raton, London, New York, 2007).Google Scholar
  26. 24.
    E. Ya. Rapoport and Yu. E. Pleshivtseva, Optimum Control of Temperature Regimes of Induction Heating (Nauka, Moscow, 2012) [in Russian].Google Scholar
  27. 25.
    E. Ya. Rapoport and Yu. E. Pleshivtseva, “Optimal control of induction heating of metals prior to warm and hot forming,” in ASM Handbook, Vol. 4C: Induction Heating and Heat Treatment (ASM Int., New York, 2014), pp. 366–401.Google Scholar
  28. 26.
    A. V. Lykov, Heat Conduction Theory (Vyssh. Shkola, Moscow, 1967) [in Russian].Google Scholar
  29. 27.
    E. M. Kartashov, Analytical Methods in the Thermal Conductivity Theory of Solids (Vyssh. Shkola, Moscow, 2001) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Samara State Technical UniversitySamaraRussia

Personalised recommendations