Skip to main content
Log in

Configuring of Excessive Onboard Equipment Sets

  • Control Systems for Technological Objects
  • Published:
Journal of Computer and Systems Sciences International Aims and scope

Abstract

We develop a unified approach to controlling the configuration of the onboard equipment sets constructed on principles of integrated modular avionics and avionics of the unstaffed onboard equipment. We design a tool to analytically generate alternative configurations of onboard equipment sets that are surplus to achieve the required structural properties of the configurations. We analyze the interconnection between analytic solutions and supervisors of the configuration of the equipment sets. A methodological example for the flight control system of a plane is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. A. Fedosov, V. V. Kos’yanchuk, and N. I. Sel’vesyuk, “Integrated modular avionics,” Radioelektron. Tekhnol., No. 1, 66–71 (2015).

    Google Scholar 

  2. Yu. Sheynin, E. Suvorova, V. Bukov, and V. Shurman, “Integrated onboard networking for IMA2G,” in Proceedings of the 29th Congress of the International Council of the Aeronautical Sciences, St. Petersburg, Russia, 2014, Paper 0899.

    Google Scholar 

  3. Manual R–297 on the Development and Qualification of Integrated Modular Avionics (Aviaizdat, Moscow, 2015) [in Russian].

  4. D. V. Buzdalov, S. V. Zelenov, E. V. Kornykhin, et al., “Tools for system design of integrated modular avionics,” Tr. ISP RAN 26, 201–230 (2014).

    Google Scholar 

  5. V. P. Kutakhov, V. N. Bukov, V. N. Suchkov, et al., “Fundamentals of avionics creation for maintenance–free aircraft,” in Proceedings of the Conference on Fundamental Research in the Area of Design, Production and Export of Domestic High–Tech Industrial Products, 2010 (VUNTs VVS, Moscow, 2011), pp. 103–114.

    Google Scholar 

  6. G. A. Shevtsov and E. M. Sheremet, Logical Reservation (L’vovsk. Gos. Univ., L’vov, 1973) [in Russian].

    Google Scholar 

  7. Yu. A. Belousov, “Fault–tolerant onboard computing systems. Hardware,” Aviakosm. Priborostr., No. 3, 18–23 (2003).

    Google Scholar 

  8. V. I. Klepikov, Fault–tolerance in Distributed Control Systems (Zolotoe Sechenie, Moscow, 2014) [in Russian].

    Google Scholar 

  9. A. R. Degtyarev and S. K. Kiselev, “Reliability of integrated modular avionics reconfigurable complexes,” Avtomatiz. Protsess. Upravl. 43 (1), 25–30 (2016).

    Google Scholar 

  10. V. A. Bogatyrev and A. V. Bogatyrev, “The reliability of the cluster real–time systems with fragmentation and redundant service requests,” Inform. Tekhnol. 22, 409–416 (2016).

    Google Scholar 

  11. E. Yu. Zybin and V. V. Kos’yanchuk, “An algebraic criterion for detecting the fact and time a fault occurs in control systems of dynamic plants,” J. Comput. Syst. Sci. Int. 55, 546 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  12. B. V. Vidin, I. O. Zharinov, and O. O. Zharinov, “Decomposition methods in the distribution of computing resources problems in multi–machine complexes of avionic equipment,” Inform.–Upravl. Sist., No. 1, 2–5 (2010).

    Google Scholar 

  13. Yu. A. Gatchin, B. V. Vidin, I. O. Zharinov, and O. O. Zharinov, “Models and methods of integrated modular avionics designing,” Vestn. Komp’yut. Inform. Tekhnol., No. 1, 12–20 (2010).

    Google Scholar 

  14. A. R. Degtyarev and G. V. Medvedev, “Algorithm for task distribution in multiprocessor complexes of integrated modular avionics,” Avtomatiz. Protsess. Upravl. 35 (1), 79–84 (2014).

    Google Scholar 

  15. A. A. Tarasov, Functional Reconfiguration of Fault–Tolerant Systems (Logos, Moscow, 2012) [in Russian].

    Google Scholar 

  16. V. N. Bukov, A. M. Bronnikov, A. M. Ageev, and I. F. Gamayunov, “An analytic approach to constructing configurations of technical systems,” Autom. Remote Control 78, 1600 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  17. I. F. Gamayunov, “Generation of alternative solutions in the redundancy management problem for hardware complexes,” Autom. Remote Control 79, 655 (2018).

    Article  Google Scholar 

  18. O. A. Babich, Information Processing in Navigation Complexes (Mashinostroenie, Moscow, 1991) [in Russian].

    Google Scholar 

  19. A. V. Chernodarov, Control, Diagnostics and Identification of Aircraft Devices and Measuring and Computing Complexes (Nauchtekhlitizdat, Moscow, 2017) [in Russian].

    Google Scholar 

  20. V. A. Bodner, R. A. Zakirov, and I. I. Smirnova, Aviation Simulators (Mashinostroenie, Moscow, 1978) [in Russian].

    Google Scholar 

  21. A. A. Krasovskii, Principles of Flight Simulator Theory (Mashinostroenie, Moscow, 1995) [in Russian].

    Google Scholar 

  22. L. P. Kolodezhnyi, A. M. Bronnikov, and V. V. Enyutin, Control of Technical Condition of Aircraft Equipment, The School–Book (VUNTs VVS VVA im. prof. N. E. Zhukovskogo and Yu. A. Gagarina, Moscow, 2010) [in Russian].

    Google Scholar 

  23. V. N. Bukov, V. N. Ryabchenko, V. V. Kos’yanchuk, and E. Yu. Zybin, “Solving of linear matrix equations with canonization method,” Vestn. Kiev. Univ., Ser. Fiz.–Mat. Nauki, No. 1, 19–28 (2002).

    MATH  Google Scholar 

  24. V. N. Bukov, System Nesting. Analytical Approach to Analysis and Synthesis of Matrix Systems (Izdat. Nauch. Liter. N. F. Bochkarevoi, Kaluga, 2006) [in Russian].

    Google Scholar 

  25. A. M. Ageev, A. M. Bronnikov, V. N. Bukov, and I. F. Gamayunov, “Supervisory control method for redundant technical systems,” J. Comput. Syst. Sci. Int. 56, 410 (2017).

    Article  MATH  Google Scholar 

  26. V. N. Bukov, A. M. Bronnikov, A. M. Ageev, and I. F. Gamayunov, “Supervisory control method for redundant technical systems,” in Proceedings of the 9th International Conference on Large–Scale Systems MLSD’2016, Ed. by S. N. Vasil’ev and A. D. Tsvirkun (IPU RAN, Moscow, 2016), Vol. 2, pp. 128–131.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Ageev.

Additional information

Original Russian Text © A.M. Ageev, 2018, published in Izvestiya Akademii Nauk, Teoriya i Sistemy Upravleniya, 2018, No. 4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ageev, A.M. Configuring of Excessive Onboard Equipment Sets. J. Comput. Syst. Sci. Int. 57, 640–654 (2018). https://doi.org/10.1134/S1064230718040020

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064230718040020

Navigation