Advertisement

Scheduling in Multiprocessor Systems with Additional Restrictions

  • M. G. Furugyan
Systems Analysis and Operations Research
  • 16 Downloads

Abstract

An admissible multiprocessor preemptive scheduling problem is solved for the given execution intervals. In addition, a number of generalizations are considered—interprocessor communications are arbitrary and may vary in time; costs for processing interruptions and switches from one processor to another are taken into account; and besides the processors, additional resources are used. Algorithms based on reducing the original problem to finding paths of a specific length in a graph, a flow problem, and an integer system of linear restrictions are developed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. S. Tanaev, V. S. Gordon, and Ya. M. Shafranskii, Scheduling Theory. One-Stage Systems (Nauka, Moscow, 1984) [in Russian].Google Scholar
  2. 2.
    T. Gonzales and S. Sahni, “Preemptive scheduling of uniform processor systems,” J. Assoc. Comput. Machin. 25, 92–101 (1978).MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    A. Federgruen and H. Groenevel, “Preemptive scheduling of uniform machines by ordinary network flow technique,” Manage. Sci. 32, 341–349 (1986).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    P. Brucker, Scheduling Algorithms (Springer, Heidelberg, 2007).zbMATHGoogle Scholar
  5. 5.
    D. S. Guz and M. G. Furugyan, “Computation scheduling in multiprocessor real-time automatic control systems with constrained processor memory,” Autom. Remote Control 66, 295 (2005).CrossRefzbMATHGoogle Scholar
  6. 6.
    B. V. Grechuk and M. G. Furugyan, “Optimal preemptive scheduling in multiprocessor systems with incomplete communication graph,” Cybern. Syst. Anal. 41, 397–402 (2005).CrossRefzbMATHGoogle Scholar
  7. 7.
    E. O. Kosorukov and M. G. Furugyan, “Some algorithms for resource allocation in multiprocessor systems,” Moscow Univ. Comput. Math. Cybernet. 33, 202 (2009).MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    M. G. Furugyan, “Computation planning in multiprocessor real time automated control systems with an additional resource,” Autom. Remote Control 76, 487 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    M. G. Furugyan, “Making schedules in multiprocessing systems with several additional resources,” J. Comput. Syst. Sci. Int. 56, 227 (2017).CrossRefzbMATHGoogle Scholar
  10. 10.
    M. G. Furugyan, “Computation scheduling in multiprocessor systems with several types of additional resources and arbitrary processors,” Moscow Univ. Comput. Math. Cybernet. 41, 145 (2017).MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    A. A. Mironov and V. I. Tsurkov, “Hereditarily minimax matrices in models of transportation type,” J. Comput. Syst. Sci. Int. 37, 927 (1998).zbMATHGoogle Scholar
  12. 12.
    A. A. Mironov and V. I. Tsurkov, “Minimax under nonlinear transportation constraints,” Dokl. Math. 64, 351 (2001).zbMATHGoogle Scholar
  13. 13.
    A. A. Mironov and V. I. Tsurkov, “Transportation problems with minimax criteria,” Dokl. Math. 53, 119 (1996).zbMATHGoogle Scholar
  14. 14.
    A. A. Mironov and V. I. Tsurkov, “Minimax in transportation models with integral constraints: I,” J. Comput. Syst. Sci. Int. 42, 562 (2003).zbMATHGoogle Scholar
  15. 15.
    A. A. Mironov, V. V. Fedorchuk, and V. I. Tsurkov, “Minimax in transportation models with integral constraints: II,” J. Comput. Syst. Sci. Int. 44, 732 (2005).zbMATHGoogle Scholar
  16. 16.
    A. A. Mironov and V. I. Tsurkov, “Network models with fixed parameters at the communication nodes. 1,” J. Comput. Syst. Sci. Int. 32 (6), 1–11 (1994).MathSciNetzbMATHGoogle Scholar
  17. 17.
    A. A. Mironov and V. I. Tsurkov, “Network models with fixed parameters at the communication nodes. 2,” J. Comput. Syst. Sci. Int. 33 (3), 107–116 (1995).MathSciNetzbMATHGoogle Scholar
  18. 18.
    Yu. E. Malashenko and N. M. Novikova, “Analysis of multiuser network systems taking into account uncertainty,” J. Comput. Syst. Sci. Int. 37, 292 (1998).zbMATHGoogle Scholar
  19. 19.
    Yu. E. Malashenko and N. M. Novikova, “The analysis of multiuser network systems under uncertainty: 7. The problem of standard vulnerability analysis of a multicommodity flow network,” J. Comput. Syst. Sci. Int. 38, 589 (1999).zbMATHGoogle Scholar
  20. 20.
    Th. H. Cormen, Ch. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms (The MIT Press, Cambridge, MA, 2009).zbMATHGoogle Scholar
  21. 21.
    B. Korte and J. Vygen, Combinatorial Optimization. Theory and Algorithms (Springer, Berlin, Heidelberg, 2006).zbMATHGoogle Scholar
  22. 22.
    D. T. Fillips and A. Garcia-Diaz, Fundamentals of Network Analysis (Prentice-Hall, Englewood Cliffs, NJ, 1981).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Dorodnicyn Computing CenterRussian Academy of SciencesMoscowRussia

Personalised recommendations