Skip to main content
Log in

Terminal synthesis of orbital orientation for a spacecraft

  • Control Systems of Moving Objects
  • Published:
Journal of Computer and Systems Sciences International Aims and scope

Abstract

This paper presents an algorithm for the terminal synthesis of the orbital orientation for a spacecraft. The algorithm is based on solving the following problems: the analytical determination of the program values for the angular velocity vector components in an orbital coordinate system and the stabilization of the program values for the turn rate vector components and the desired terminal angular position of a spacecraft. The program values of the angular velocity vector components are determined analytically using the method previously proposed by the authors for solving a boundary value problem based on the parameter identification of a discrete model with the use of modal control. The simulation results demonstrating the effectiveness of the proposed algorithm, as well as the high accuracy level of the steady-state control, are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. E. Zubov, “Algorithmic support of automatic mode of spacecraft orbital orientation,” Izv. Akad. Nauk SSSR, Tekh. Kibernet., No. 2, 193–202 (1990).

    Google Scholar 

  2. N. E. Zubov, “Optimal control of spacecraft terminal reorientation based on algorithm with forecasting model,” Kosm. Issled. 29, 340–350 (1991).

    Google Scholar 

  3. Reference Book on Automatic Control, Ed. by A. A. Krasovskii (Nauka, Moscow, 1987) [in Russian].

  4. E. A. Mikrin, N. E. Zubov, S. S. Negodyaev, et al., “Optimal control of spacecraft orbital orientation based on algorithm with forecasting model,” Tr. MFTI 2, 189–195 (2010).

    Google Scholar 

  5. N. E. Zubov, E. A. Mikrin, M. Sh. Misrikhanov, V. N. Ryabchenko, S. N. Timakov, and E. A. Cheremnykh, “Identification of the position of an equilibrium attitude of the international space station as a problem of stable matrix completion,” J. Comput. Syst. Sci. Int. 51, 291 (2012).

    Article  MATH  Google Scholar 

  6. N. E. Zubov, E. A. Mikrin, M. Sh. Misrikhanov, A. S. Oleinik, and V. N. Ryabchenko, “Terminal bang-bang impulsive control of linear time invariant dynamic systems,” J. Comput. Syst. Sci. Int. 53, 430 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  7. N. E. Zubov, E. A. Mikrin, M. Sh. Misrikhanov, V. N. Ryabchenko, and S. N. Timakov, “The use of the exact pole placement algorithm for the control of spacecraft motion,” J. Comput. Syst. Sci. Int. 52, 129 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  8. N. E. Zubov, E. A. Mikrin, V. N. Ryabchenko, and S. N. Timakov, “The use of an adaptive bandpass filter as an observer in the control loop of the international space station,” J. Comput. Syst. Sci. Int. 51, 560 (2012).

    Article  MATH  Google Scholar 

  9. E. A. Vorob’eva, N. E. Zubov, E. A. Mikrin, M. Sh. Misrikhanov, V. N. Ryabchenko, and S. N. Timakov, “Synthesis of stabilizing spacecraft control based on generalized Ackermann’s formula,” J. Comput. Syst. Sci. Int. 50, 93 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  10. A. V. Bogachev, E. A. Vorob’eva, N. E. Zubov, E. A. Mikrin, M. Sh. Misrikhanov, V. N. Ryabchenko, and S. N. Timakov, “Unloading angular momentum for inertial actuators of a spacecraft in the pitch channel,” J. Comput. Syst. Sci. Int. 50, 483 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  11. N. E. Zubov, E. A. Mikrin, M. Sh. Misrikhanov, and V. N. Ryabchenko, “Synthesis of decoupling laws for attitude stabilization of a spacecraft,” J. Comput. Syst. Sci. Int. 51, 80 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  12. N. E. Zubov, E. A. Mikrin, M. Sh. Misrikhanov, and V. N. Ryabchenko, “Modification of the exact pole placement method and its application for the control of spacecraft motion,” J. Comput. Syst. Sci. Int. 52, 279 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  13. N. E. Zubov, E. A. Mikrin, M. Sh. Misrikhanov, and V. N. Ryabchenko, “Synthesis of controls for a spacecraft that optimize the pole placement of the closed-loop control system,” J. Comput. Syst. Sci. Int. 51, 431 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  14. N. E. Zubov, E. A. Mikrin, V. N. Ryabchenko, A. S. Oleinik, and D. E. Efanov, “The spacecraft angular velocity estimation in the orbital stabilization mode by the results of the local vertical sensor measurement,” Vest. MGTU Im. N.E. Baumana, Ser. Priborostroen., No. 5, 3–17 (2014).

    Google Scholar 

  15. V. A. Besekerskii and E. P. Popov, Theory of Automatic Regulation Systems (Nauka, Moscow, 1975) [in Russian].

    Google Scholar 

  16. Yu. F. Golubev, “Quaternion algebra in rigid body kinematics,” KIAM Preprint No. 39 (Keldysh Inst. Appl. Math., Moscow, 2013). http://library.keldysh.ru/preprint.asp?id=2013-39

  17. N. E. Zubov, A. V. Lapin, and E. A. Mikrin, “Application of the exact pole placement method to the problem of space vehicle attitude reduction in terms of quaternion elements,” Vest. Komp. Inform. Tekhnol., No. 3, 3–9 (2014).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. E. Zubov.

Additional information

Original Russian Text © N.E. Zubov, M.V. Li, E.A. Mikrin, V.N. Ryabchenko, 2017, published in Izvestiya Akademii Nauk, Teoriya i Sistemy Upravleniya, 2017, No. 4, pp. 154–173.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zubov, N.E., Li, M.V., Mikrin, E.A. et al. Terminal synthesis of orbital orientation for a spacecraft. J. Comput. Syst. Sci. Int. 56, 721–737 (2017). https://doi.org/10.1134/S1064230717040190

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064230717040190

Navigation