Skip to main content
Log in

Concept of a multitask grid system with a flexible allocation of idle computational resources of supercomputers

  • Computer Methods
  • Published:
Journal of Computer and Systems Sciences International Aims and scope

Abstract

A new concept of a multitask distributed heterogeneous computing system is proposed. The basic principles of such system are that it uses only idle supercomputer resources and does it as a common user; thus, it does not conflict with the administration policy in any way. The efficiency of the proposed concept is demonstrated by the example of the real grid system that currently uses supercomputer resources to boost the performance of the SAT@home and OPTIMA@home volunteer distributed computing projects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Foster and C. Kesselman, The Grid: Blueprint for a New Computing Infrastructure (Morgan Kaufmann, San Francisco, CA, 1999).

    Google Scholar 

  2. D. P. Anderson, “BOINC: A system for public-resource computing and storage,” in Proceedings of the 5th International Workshop on Grid Computing, Pittsburgh, USA, 2004, pp. 4–10.

    Google Scholar 

  3. E. E. Ivashko and N. N. Nikitina, “Use of BOINC-grid in computationally intensive scientific studies,” Vest. Novosib. Univ., Ser. Inform. Tekhnol. 11, 53–57 (2013).

    Google Scholar 

  4. M. O. Manzyuk, O. S. Zaikin, and M. A. Posypkin, “CluBORun: tool for utilizing idle resources of computing clusters in BOINC computing,” Inform. Tekhnol. Vychisl. Sist., No. 4, 3–11 (2014).

    Google Scholar 

  5. A. Afanasiev, I. Bychkov, M. Manzyuk, M. Posypkin, A. Semenov, and O. Zaikin, “Technology for integrating idle computing cluster resources into volunteer computing projects,” in Proceedings of the 5th International Workshop on Computer Science and Engineering (WCSE 2015),Moscow, Russia, 2015, pp. 109–114.

    Google Scholar 

  6. Terascale Open-source Resource and QUEue Manager (TORQUE). http://www.adaptivecomputing. com/products/open-source/torque/

  7. Simple Linux Utility for Resource Management (SLURM). http://slurm.schedmd.com/slurm.html

  8. Cleo–the System for Resource Control of Computational Clusters. http://parcon.parallel.ru/cleo.html

  9. A. V. Baranov and D. S. Lyakhovets, “Comparison of job scheduling quality in batch processing systems SLURM and SUPPZ,” in Proceedings of the International Supercomputer Conference on Scientific Service in the Internet: All Facets of Parallelism (Mosk. Gos. Univ., Moscow, 2013), pp. 410–414.

    Google Scholar 

  10. O. S. Zaikin, M. A. Posypkin, A. A. Semenov, and N. P. Khrapov, “Experience in organizing volunteer computing: a case study of the OPTIMAhome and SAThome projects,” Vestn. Nizhegor. Univ. im. N.I. Lobachevskogo, No. 5-2, 340–347 (2012).

    Google Scholar 

  11. Irkutsk Supercomputer Center of Siberian Branch of RAS. http://hpc.icc.ru/index.php

  12. Interdepartment Supercomputer Center of RAS. http://www.jscc.ru/

  13. A. A. Semenov, “Decomposition representations of logical equations in problems of inversion of discrete functions,” J. Comput. Syst. Sci. Int. 48, 718 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  14. O. S. Zaikin, A. A. Semenov, and M. A. Posypkin, “Constructing decomposition sets for distributed solution of sAT problems in volunteer computing project SAThome,” Upravl. Bol’sh. Sist., No. 43, 138–156 (2013).

    Google Scholar 

  15. Rainbow–Tables for Cryptological Analysis of Key Flow Generator A5/1. https://opensource.srlabs.de/projects/ a51-decrypt

  16. I. Otpuschennikov, A. Semenov, I. Gribanova, O. Zaikin, and S. Kochemazov, “Encoding cryptographic functions to SAT using transalg system,” Front. Artific. Intelligence Appl. 285, 1594–1595 (2016).

    Google Scholar 

  17. O. Zaikin, S. Kochemazov, and A. Semenov, “SAT-based search for systems of diagonal latin squares in volunteer computing project SAThome,” in Proceedings of the 39th International Convention on Information and Communication Technology, Electronics, and Microelectronics (MIPRO 2016), Opatija, Croatia, 2016, pp. 293–297.

    Google Scholar 

  18. J. Brown, F. Cherry, L. Most, M. Most, E. Parker, and W. Wallis, “Completion of the spectrum of orthogonal diagonal latin squares,” Lect. Notes Pure Appl. Math. 139, 43–49 (1992).

    MathSciNet  MATH  Google Scholar 

  19. A. Semenov and O. Zaikin, “Using Monte Carlo method for searching partitionings of hard variants of boolean satisfiability problem,” Lect. Notes Comp. Sci. 9251, 222–230 (2015).

    Article  Google Scholar 

  20. A. Semenov and O. Zaikin, “Algorithm for finding partitionings of hard variants of boolean satisfiability problem with application to inversion of some cryptographic functions,” Springer Plus 5 (1), 1–16 (2016).

    Article  Google Scholar 

  21. O. S. Zaikin and A. A. Semenov, “Application of the monte carlo method for estimating the total time of solving the SAT problem in parallel,” Vychisl. Metody Programm.: Nov. Vychisl. Tekhnol., No. 1, 22–35 (2014).

    Google Scholar 

  22. K. K. Abgaryan and M. A. Posypkin, “Software for solving problems of parametric identification of the interatomic interaction potential,” Int. J. Open Inform. Technol. 2 (10), 14–19 (2014).

    MATH  Google Scholar 

  23. Y. Evtushenko, M. Posypkin, and I. Sigal, “A framework for parallel large-scale global optimization,” Comput. Sci. Res. Developm. 23, 211–215 (2009).

    Article  Google Scholar 

  24. A. Semenov, O. Zaikin, D. Bespalov, and M. Posypkin, “Parallel logical cryptanalysis of the generator A5/1 in BNB-grid system,” Lect. Notes Comp. Sci. 6873, 473–483 (2011).

    Article  MATH  Google Scholar 

  25. Z. Farkas, P. Kacsuk, Z. Balaton, and G. Gombas, “Interoperability of BOINC and EGEE,” Future Generation Comput. Syst. 26, 1092–1103 (2010).

    Article  Google Scholar 

  26. D. Thain, T. Tannenbaum, and M. Livny, “Distributed computing in practice: The condor experience,” Concurr. Comput.: Practice Experience 17, 323–356 (2005).

    Article  Google Scholar 

  27. Software Complex Cluster for BOINC Run (CluBORun). https://github.com/Nauchnik/CluBORun

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. S. Zaikin.

Additional information

Original Russian Text © A.P. Afanasiev, I.V. Bychkov, O.S. Zaikin, M.O. Manzyuk, M.A. Posypkin, A.A. Semenov, 2017, published in Izvestiya Akademii Nauk, Teoriya i Sistemy Upravleniya, 2017, No. 4, pp. 133–139.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afanasiev, A.P., Bychkov, I.V., Zaikin, O.S. et al. Concept of a multitask grid system with a flexible allocation of idle computational resources of supercomputers. J. Comput. Syst. Sci. Int. 56, 701–707 (2017). https://doi.org/10.1134/S1064230717040025

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064230717040025

Navigation