Skip to main content

Estimates of near-circular orbits after a single correction: a geometrical method

Abstract

Estimates of the maneuvers of active space objects are considered. We propose analytical and numerical-analytical algorithms to estimate short-term and long-term one-impulse maneuvers for the case where the initial and final orbits are determined with errors. Both coplanar and noncoplanar maneuvers are considered. Special attention is given to the velocity and reliability of the solution of the problem. The process to find the solution has a geometrical interpretation. We provide examples of estimates for maneuvers of spacecraft located at geosynchronous orbits. The results obtained by the proposed method are compared with the results obtained by the traditional approach, excluding errors of orbit determination.

This is a preview of subscription content, access via your institution.

References

  1. S. Kamensky, A. Tuchin, V. Stepanyants, and K. T. Alfriend, “Algorithm of automatic detection and analysis of non-evolutionary changes in orbital motion of geocentric objects,” in Proceedings of the AAS/AIAA Astrodynamics Specialist Conference, Hawaii, 2009, Paper AAS No. 09-103, pp. 1–34.

    Google Scholar 

  2. G. K. Borovin, M. V. Zakhvatkin, V. A. Stepan’yants, A. G. Tuchin, D. A. Tuchin, and V. S. Yaroshevskiy, “Identification of maneuvers performed by spacecraft,” Inzh. Zh.: Nauka Innov., No. 2, 8 (2012).

    Google Scholar 

  3. A. A. Baranov, “Numerical and analytical determination of manoeuvre parameters of spacecraft multiturn meeting at close near circular non-coplanar orbits,” Kosm. Issled. 46, 430 (2008).

    Google Scholar 

  4. A. A. Baranov, “On geometrical solution of the problem of meeting on close nearly circular coplanar orbits,” Kosm. Issled. 27, 808–816 (1989).

    Google Scholar 

  5. A. A. Baranov, A. F. B. de Prado, V. Yu. Razumny, and An. A. Baranov, “Optimal low-thrust transfers between close near-circular coplanar orbits,” Cosmic Res. 49, 269 (2011).

    Article  Google Scholar 

  6. A. A. Baranov and M. O. Karatunov, “A posteriori evaluation of maneuvers performed by active space objects,” Vestn. Mosk. Gos. Tekh. Univ. im. N. E. Baumana, Ser. Mashinostr., No. 5, 25–37 (2015).

    Google Scholar 

  7. G. E. Kuzmak and A. Z. Braude, “Approximate construction of optimal flights in a small neighborhood of a circular orbit,” Kosm. Issled. 7, 323–338 (1969).

    Google Scholar 

  8. A. A. Baranov and M. O. Karatunov, “Estimation of parameters of two coupled maneuvers performed by an active space object,” J. Comput. Syst. Sci. Int. 2, 284 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. O. Karatunov.

Additional information

Original Russian Text © A.A. Baranov, V.O. Vikhrachev, M.O. Karatunov, Yu.N. Razumnyi, 2017, published in Izvestiya Akademii Nauk, Teoriya i Sistemy Upravleniya, 2017, No. 1, pp. 141–149.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Baranov, A.A., Vikhrachev, V.O., Karatunov, M.O. et al. Estimates of near-circular orbits after a single correction: a geometrical method. J. Comput. Syst. Sci. Int. 56, 137–145 (2017). https://doi.org/10.1134/S1064230717010038

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064230717010038