Advertisement

Nonlinear integer transportation problem with additional supply and consumption points

  • A. S. Esenkov
  • V. Yu. Leonov
  • A. P. TizikEmail author
  • V. I. Tsurkov
Systems Analysis and Operations Research
  • 63 Downloads

Abstract

An iterative decomposition method based on the sequential solution of two-dimensional problems subject to constraints from different groups is successfully applied to the case of integer transportation problems with convex objective functions and ascribed suppliers and consumers is proposed. Through the introduction of new variables, it has been possible to extend the constructions of the algorithm in which the central point is the solution of optimization problems with two constraints. A detailed analysis of these problems is presented in the present paper.

Keywords

System Science International Dimensional Problem Transportation Problem Coupling Variable Transportation Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. P. Tizik and V. I. Tsurkov, “Iterative functional modification method for solving a transportation problem,” Autom. Remote Control 73, 134–143 (2012).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    E. G. Gol’shtein and D. B. Yudin, Linear Programming Problems of Transportation Type (Nauka, Moscow, 1969) [in Russian].zbMATHGoogle Scholar
  3. 3.
    E. B. Trius, Mathematical Programming Problems of Transportation Type (Sovetskoe radio, Moscow, 1967) [in Russian].Google Scholar
  4. 4.
    A. S. Esenkov, D. I. Kuzovlev, V. Yu. Leonov, A. P. Tizik, V. I. Tsurkov, “Network optimization and problems with coupling variables,” J. Comput. Syst. Sci. Int. 53, 369–383 (2014).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    A. A. Sokolov, A. P. Tizik, and V. I. Tsurkov, “Iterative method for the transportation problem with additional supply and consumption points and quadratic cost,” J. Comput. Syst. Sci. Int. 52, 588–598 (2013).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    A. A. Mironov, T. A. Levkina, and V. I. Tsurkov, “Minimax estimations of arc weights in integer networks with fixed node degrees,” Appl. Comput. Math. 8, 216–226 (2009).MathSciNetzbMATHGoogle Scholar
  7. 7.
    A. A. Mironov and V. I. Tsurkov, “Class of distribution problems with minimax criterion,” Dokl. Ross. Akad. Nauk 336, 35–38 (1994).MathSciNetzbMATHGoogle Scholar
  8. 8.
    A. A. Mironov and V. I. Tsurkov, “Transport Problems with a Minimax Criterion,” Dokl. Ross. Akad. Nauk 346, 168–171 (1996).MathSciNetzbMATHGoogle Scholar
  9. 9.
    A. A. Mironov and V. I. Tsurkov, “Hereditarily minimax matrices in models of transportation type,” J. Comput. Syst. Sci. Int. 37, 927–944 (1998).MathSciNetzbMATHGoogle Scholar
  10. 10.
    A. A. Mironov and V. I. Tsurkov, “Minimax transportation models with integral constraints. I,” J. Comput. Syst. Sci. Int. 42, 562–574 (2003).MathSciNetzbMATHGoogle Scholar
  11. 11.
    A. A. Mironov, V. V. Fedorchuk, and V. I. Tsurkov, “Minimax transportation models with integral constraints. II,” J. Comput. Syst. Sci. Int. 44, 732–752 (2005).MathSciNetzbMATHGoogle Scholar
  12. 12.
    A. A. Mironov and V. I. Tsurkov, “Closed transportation models with minimax criterion,” Autom. Remote Control 63, 388–398 (2002).MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    A. A. Mironov and V. I. Tsurkov, “Open transportation models with minimax criterion,” Dokl. Math. 64, 374–377 (2001).MathSciNetzbMATHGoogle Scholar
  14. 14.
    A. A. Mironov and V. I. Tsurkov, “Minimax under nonlinear transportation constraints,” Dokl. Math. 64, 351–354 (2001).MathSciNetzbMATHGoogle Scholar
  15. 15.
    A. A. Mironov and V. I. Tsurkov, “Network models with fixed parameters at the communication nodes. 1,” J. Comput. Syst. Sci. Int. 33(3), 107–116 (1995).MathSciNetzbMATHGoogle Scholar
  16. 16.
    A. A. Mironov and V. I. Tsurkov, “Network models with fixed parameters at the communication nodes. 2,” J. Comput. Syst. Sci. Int. 32(6), 1–11 (1994).MathSciNetzbMATHGoogle Scholar
  17. 17.
    A. P. Tizik and V. I. Tsurkov, “Optimal channel distribution in communications networks,” Sov. J. Comput. Syst. Sci. 28(2), 24–31 (1990).zbMATHGoogle Scholar
  18. 18.
    A. A. Mironov and V. I. Tsurkov, “Transport and network problems with the minimax criterion,” Comput. Math. Math. Phys. 35, 15–30 (1995).MathSciNetzbMATHGoogle Scholar
  19. 19.
    A. A. Mironov and V. I. Tsurkov, “Hereditarily minimax matrices in models of transportation type,” J. Comput. Syst. Sci. Int. 37, 97–944 (1998).MathSciNetzbMATHGoogle Scholar
  20. 20.
    A. A. Mironov and V. I. Tsurkov, “Transport-type problems with a criterion,” Avtom. Telemekh., No. 12, 109–118 (1995).Google Scholar
  21. 21.
    A. P. Tizik and V. I. Tsurkov, “Metod posledovatel’noi modifikatsii funktsionala dlya resheniya transportnoi zadachi,” Avtom. Telemekh., No. 1, 148–158 (2012).Google Scholar
  22. 22.
    V. I. Tsurkov, “An Iterative Method of the Decomposition for Extremum Problems,” Doklady akademii nauk 250(2), 304–307 (1980).MathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • A. S. Esenkov
    • 1
  • V. Yu. Leonov
    • 1
  • A. P. Tizik
    • 1
    Email author
  • V. I. Tsurkov
    • 1
  1. 1.Dorodnicyn Computing CenterRussian Academy of SciencesMoscowRussia

Personalised recommendations