Skip to main content
Log in

Cycle-based reducibility of multi-index transport-type systems of linear inequalities

  • Computer Methods
  • Published:
Journal of Computer and Systems Sciences International Aims and scope

Abstract

The consistency of multi-index transport-type systems of linear inequalities is investigated using an approach based on the principle of cycle-based reducibility of systems of linear inequalities to flow algorithms. Sufficient conditions of reducibility, determining a subclass of multi-index systems that can be solved using this approach are found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. G. Afraimovich and M. Kh. Prilutskii, “Multiindex Resource Distributions for Hierarchical Systems,” Avtom. Telemekh., 67(6), 194–205 (2006) [Automat. Remote Control 67 (6), 1007–1018 (2006)].

    Google Scholar 

  2. L. G. Afraimovich and M. Kh. Prilutskii, “Multicommodity Flows in Tree-Like Networks,” Izv. Ross. Akad. Nauk, Teor. Sist. Upr., No. 2, 57–63 (2008) [Comp. Syst. Sci. 47 (2), 214–220 (2008)].

  3. M. Kh. Prilutskii, “Multicriterial Multi-Index Resource Scheduling Problems,” Izv. Ross. Akad. Nauk, Teor. Sist. Upr., No. 1, 78–82 (2007) [Comp. Syst. Sci. 46 (1), 78–82 (2007)].

  4. M. Kh. Prilutskii, “Multicriteria Allocation of Homogeneous Resource in Hierarchical Systems,” Avtom. Telemekh., No. 2, 139–146 (1996).

  5. S. N. Chernikov, “Linear Inequalities,” Itogi Nauki. Ser. Mat. Algebra. Topol. Geom., (VINITI, Moscow, 1968) pp. 137–187.

    Google Scholar 

  6. A. Schrijver, Theory of Linear and Integer Programming (Wiley, 1986; Mir, Moscow, 1991).

  7. S. Agmon, “The Relaxation Method for Linear Inequalities,” Canadian J. Math. 6(3), 382–392 (1954).

    MATH  MathSciNet  Google Scholar 

  8. D. Gale, Theory of Linear Economic Models (Univ. of Chicago, 1960; Mir, Moscow, 1969).

    Google Scholar 

  9. L. G. Reskin and I. O. Kirichenko, Multi-Index Problems of Linear Programming (Radio i Svyaz’, Moscow, 1982).

    Google Scholar 

  10. V. A. Emelichev, M. M. Kovalev, and M. K. Kravtsov, Polyhedra, Graphs, Optimization (Nauka, Moscow, 1981).

    Google Scholar 

  11. L. Bandopadhyaya and M. C. Puri, “Impaired Flow Multi-Index Transportation Problem with Axial Constraints”, J. Australian Math. Soc., Ser. B, Applied Math. 29(3), 296–309 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  12. W. Junginger, “On Representatives of Multi-Index Transportation Problems,” Europ. J. Operational Research 66(3), 353–371 (1993).

    Article  MATH  Google Scholar 

  13. J. A. De Loera, E. D. Kim, S. Onn, and F. Santos, “Graphs of Transportation Polytopes,” J. Combinatorial Theory, Ser. A 116(8), 1306–1325 (2009).

    Article  MATH  Google Scholar 

  14. M. A. Kravtsov and A. P. Krachkovskii, “On Some Properties of Three-Index Transport Polyhedra,” Diskret. Matematika 11(3), 109–125 (1999).

    MathSciNet  Google Scholar 

  15. M. Garey and D. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (Freeman, 1979; Mir, Moscow, 1982).

    Google Scholar 

  16. A. M. Frieze, “Complexity of a 3-Dimensional Assignment Problem,” Europ. J. Operational Research 13(2), 161–164 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  17. R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory, Algorithms, and Applications (Prentice-Hall, 1993).

  18. Z. Galil and E. Tardos, “A Min-Cost Flow Problem,” J. ACM 35(2), 374–386 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  19. A. V. Goldberg and S. Rao, “Beyond the Flow Decomposition Barrier,” J. ACM 45(5), 783–797 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  20. B. G. Litvak and A. M. Rappoport, “Linear Programming Problems Allowing Network Substitution,” Ekonom. Mat. Metody 6(4), 594–604 (1970).

    MathSciNet  Google Scholar 

  21. Y. Lin, “A Recognition Problem in Converting Linear Programming to Network Flow Models,” Appl. Math.: A J. Chin. Univ. 8(1), 76–85 (1993).

    Article  MATH  Google Scholar 

  22. M. M. Kovalev, Matroids in Discrete Optimization (Editorial URSS, Moscow, 2003).

    Google Scholar 

  23. N. Gülpinar, G. Gutin, G. Mitra, and A. Zverovitch, “Extracting Pure Network Submatrices in Linear Programs Using Signed Graphs,” Discrete Appl. Math. 137(3) 359–372 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  24. C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and Complexity (Dover Publications, Mineola, N.Y., 1998).

    MATH  Google Scholar 

  25. T. C. Hu, Integer Programming and Network Flows (Addison-Wesley, 1970).

  26. L. R. Ford and D. R. Fulkerson, Flows in Networks (Princeton Univ. Press, Princeton. 1960; Mir, Moscow, 1966).

    Google Scholar 

  27. A. D. Hoffmann and D. B. Kraskal, “Integer Boundary Points of Convens Polyhedra,” in Linear Inequalities and Close Problems (Inostr. Literatur., Moscow, 1959), pp. 325–347.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © L.G. Afraimovich, 2010, published in Izvestiya Akademii Nauk. Teoriya i Sistemy Upravleniya, 2010, No. 4, pp. 83–90.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Afraimovich, L.G. Cycle-based reducibility of multi-index transport-type systems of linear inequalities. J. Comput. Syst. Sci. Int. 49, 590–597 (2010). https://doi.org/10.1134/S106423071004009X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106423071004009X

Keywords

Navigation