Skip to main content
Log in

Decomposition representations of logical equations in problems of inversion of discrete functions

  • Discrete Systems
  • Published:
Journal of Computer and Systems Sciences International Aims and scope

Abstract

Problems of inversion of discrete functions that are deterministically computable for polynomial time is considered. The propositional approach, which is based on the technique of representation of algorithms as systems of logical equations, is applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Semenov and E. V. Buranov, “Emdeding of the Problem of Cryptoanalysis of Symmetric Ciphers in Propositional Logic,” in Computational Technologies (Joint Issue with Journal “Regional’nyi Vestnik Vostoka”) 8, 118–126 (2003).

    Google Scholar 

  2. A. A. Semenov, “A Logical-Heuristic Approach in Cryptoanalysis of generators of Double Sequences,” in Proceedings of International Conference PAVT’07 (Izd-vo YuUrGU, Chelyabinsk, 2007), Vol. 1, pp. 170–180 [in Russian].

    Google Scholar 

  3. O. S. Zaikin and A. A. Semenov, “Technology of Large-Block Parallelism in SAT-Problems,” Problemy Upravleniya, No. 1, 43–50 (2008).

  4. A. A. Semenov and O. S. Zaikin, “Incomplete Algorithms in Large-Block Parallelism of Combinatorial Problems,” Vychisl. Metody Program. 9(1), 112–122 (2008).

    Google Scholar 

  5. SatLive [http://www.satlive.org].

  6. E. M. Clark, O. Gramberg, and D. Peled, Verification of Models of Programs: Model Checking (MTsNMO, Moscow, 2002) [in Russian].

    Google Scholar 

  7. N. Catland, Computability. Introduction to the Theory of Recursive Functions (Mir, Moscow, 1983) [in Russian].

    Google Scholar 

  8. M. R. Garey and D. S. Johnson, Computers and Intractability: The Guide to the Theory of NP-Completeness (Freeman, San Francisco, 1979; Mir, Moscow, 1982).

    MATH  Google Scholar 

  9. A. A. Semenov, “On Complexity of Inverting a Discrete Function from a Class,” Diskretnyi Analiz i Issledovanie Operatsii, Ser. 1. 11(4), 44–55 (2004).

    Google Scholar 

  10. S. V. Yablonskii, Introduction to Discrete Mathematics (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  11. S. A. Cook, “The Complexity of Theorem-Proving Procedures” in Proceedings of 3rd Annual ACM Symposium on Theory of Computing, ACM, Ohio, USA, 1971, pp. 151–159.

  12. C. H. Papadimitriou, and K. Steiglitz, Combinatorial Optimization: Algorithms and Complexity (Prentice-Hall, Englewood Cliffs, 1982; Mir, Moscow, 1985).

    MATH  Google Scholar 

  13. J. Simon, On Some Central Problems in Computational Complexity, Doctoral Thesis. Dept. of Computer Science (Cornel University, Ithaca, N.Y., 1975).

    Google Scholar 

  14. G. S. Tseitin, “On the Complexity of Inference in Propositional Calculus,” Zap. Nauchn. Seminarov LOMI AN SSSR 8, 234–259 (1968).

    MATH  Google Scholar 

  15. G. Tseitin, “On the Complexity of Derivation in Propositional Calculus,” Studies in Constructive Mathematics and Mathematical Logic, No. 2, 115–125 (1968).

  16. F. Massacci and L. Marraro, “Logical Cryptanalysis as a SAT Problem: the Encoding of the Data Encryption Standard,” Preprint No. Dipartimento di Imformatica e Sistemistica. Universita di Roma “La Sapienza”, 1999.

  17. M. Davis, G. Logemann, and D. Loveland, “A Machine Program for Theorem Proving,” Commun. ACM 5, 394–397 (1962).

    Article  MATH  MathSciNet  Google Scholar 

  18. J. P. Marqeus-Silva and K. A. Sakallah, “GRASP: A Search Algorithm for Propositional Satisfiability,” IEEE Trans. Comput. 48(5), 506–521 (1999).

    Article  MathSciNet  Google Scholar 

  19. MiniSat: [http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/MiniSat.html].

  20. M. Moskewicz and C. Madigan, et al., “Chaff: Engineering an Efficient SAT Solver,” in Proceedings of Design Automation Conference (DAC). LAS Vegas, USA, 2001.

  21. E. Goldberg and Y. Novikov, “BerkMin: A Fast and Robust SAT Solver,” in Design Automation and Test in Europe (DATE) (Paris, 2002), pp. 142–149.

  22. Ch. Meinel and T. Theobald, Algorithms and Data Structures in VLSI-Design: OBDD-Foundations and Applications (Springer, Berlin, 1998).

    Google Scholar 

  23. R. E. Bryant, “Graph-Based Algorithms for Boolean Function Manipulation,” IEEE Trans. Comput. 35(8), 677–691 (1986).

    Article  MATH  Google Scholar 

  24. C. Y. Lee, “Representation of Switching Circuits by Binary-Decision Programs,” Bell Syst. Techn. J. 38, 985–999 (1959).

    Google Scholar 

  25. A. Tay, P. Gribomont, J. Lui, et al., Logical Approach to Artificial Intelligence (Mir, Moscow, 1991) [in Russian].

    Google Scholar 

  26. A. Kolmeroe, A. Kanui, and M. Kanegem, “Prolog—Theoretical Foundations and Modern Development,” in Logical Programming (Mir, Moscow, 1988), pp. 27–133 [in Russian].

    Google Scholar 

  27. L. Stockmeyer, “Classifying of Computational Complexity of Problems,” J. Symbolic Logic 52(1), 1–43 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  28. J. F. Groote and H. Zantema, “Resolution and Binary Decision Diagrams Cannot Simulate Each Other Polynomially,” J. Discr. Appl. Math. 130(2), 157–171 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  29. D. Kocks, D. Little, and D. Shi, Ideals, Manifolds, and Algorithms (Mir, Moscow, 2000) [in Russian].

    Google Scholar 

  30. R. G. Nigmatullin, Complexity of Boolean Functions (Nauka, Moscow, 1991) [in Russian].

    MATH  Google Scholar 

  31. L. G. Valiant, “The Complexity of Enumeration and Reliability Problems,” SIAM J. Comput. 8(3), 410–421 (1979).

    Article  MATH  MathSciNet  Google Scholar 

  32. T. Cormen, Ch. Laserson, and R. Rivest, Algorithms. Construction and Analysis (MTsNMO, Moscow, 2001) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.A. Semenov, 2009, published in Izvestiya Akademii Nauk. Teoriya i Sistemy Upravleniya, 2009, No. 5, pp. 47–61.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Semenov, A.A. Decomposition representations of logical equations in problems of inversion of discrete functions. J. Comput. Syst. Sci. Int. 48, 718–731 (2009). https://doi.org/10.1134/S1064230709050062

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064230709050062

Keywords

Navigation