Skip to main content
Log in

Assessing the Ecological Risks and Spatial Distribution of Heavy Metal Contamination at Solid Waste Dumpsites

  • DEGRADATION, REHABILITATION, AND CONSERVATION OF SOILS
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Soil samples from wild solid waste dumpsites were collected in the Bijeljina-Zvornik region (Republic of Srpska, Bosnia and Herzegovina), and the concentrations potentionally toxic metals (Ni, Cr, Mn, Zn, Cu, Pb, Cd, Fe and Al). The disposal of waste at wild dumpsites has emerged as a serious environmental challenge affecting both developed and developing countries. This paper aims to provide an in-depth analysis of the complex issue of wild dumpsites, focusing on the contamination of the environment with toxic metals. The improper disposal of solid waste has become a global concern, with wild dumpsites being a significant component of the problem. In accordance with national legislation, the mean values for Cd and Ni exceeded the limit values. Very strong positive correlations are observed between Zn and Cu, between Cd and Pb and between Ni and Cr. The ecological risk assessments for Mn are extremely high; for Ni and Pb, they are high; for Zn, Cu and Cr, they are appreciable; and for Cd, they are moderate. The Pollution Load Index (PLI) and Contamination Factor were used to evaluate metal pollution in soil samples. PLI values exceeding 1.0 in five samples signify soil pollution, supported by mean values indicating contamination. Research findings reveal different contamination levels, with Pb, Cr, Cu, and Zn at low levels, and Ni and Cd at moderate levels. The visualized results of ecological risk assessments for heavy metals in the soil underscore the critical importance of continuous monitoring and effective management of heavy metals at illegal dumpsites to preserve and protect surrounding ecosystems. The use of Surfer 12 software and the kriging method has proven to be an invaluable tool for exploring the spatial distribution of toxic metals in the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. L. A. Afolagboye, A. A. Ojo, and A. O. Talabi, “Evaluation of soil contamination status around a municipal waste dumpsite using contamination indices, soil-quality guidelines, and multivariate statistical analysis,” SN Appl. Sci. 2, 1864 (2020). https://doi.org/10.1007/s42452-020-03678-y

    Article  CAS  Google Scholar 

  2. P. Agrawal, A. Mittal, R. Prakash, M. Kumar, T. B. Singh, and S. K. Tripathi, “Assessment of contamination of soil due to heavy metals around coal fired thermal power plants at Singrauli region of India,” Bull. Environ. Contam. Toxicol. 85, 219–223 (2010). https://doi.org/10.1007/s00128-010-0006-y

    Article  CAS  Google Scholar 

  3. A. Ahamad, N. J. Raju, S. Madhav, and A. H. Khan, “Trace elements contamination in groundwater and associated human health risk in the industrial region of southern Sonbhadra, Uttar Pradesh, India,” Environ. Geochem. Health 42, 3373–3391 (2020). https://doi.org/10.1007/s10653-020-00582-7

    Article  CAS  Google Scholar 

  4. M. S. A. Ahmad and M. Ashraf, “Essential roles and hazardous effects of nickel in plants,” in Reviews of Environmental Contamination and Toxicology, Ed. by D. Whitacre (Springer, New York, 2012), Vol. 214. https://doi.org/10.1007/978-1-4614-0668-6_6

  5. W. A. Ahsan, H. R. Ahmad, Z. U. R. Farooqi, M. Sabir, M. A. Ayub, M. Rizwan, and P. Ilić, “Surface water quality assessment of Skardu springs using Water Quality Index,” Environ. Sci. Pollut. Res. 28, 20537–20548 (2021). https://doi.org/10.1007/s11356-020-11818-5

    Article  CAS  Google Scholar 

  6. I. Ali, S. Siddeeg, A. M. Idris, E. I. Brima, K. A. Ibrahim, S. A. M. Ebraheem, and M. Arshad, “Contamination and human health risk assessment of heavy metals in soil of a municipal solid waste dumpsite in Khamees-Mushait, Saudi Arabia,” Toxin Rev. 40 (1), 102–115 (2019). https://doi.org/10.1080/15569543.2018.1564144

    Article  CAS  Google Scholar 

  7. B. J. Alloway, Heavy Metals in Soils: Trace Metals and Metalloids in Soils and Their Bioavailability, 3rd Ed. (Springer, 2013), pp. 1–612. https://doi.org/10.1007/978-94-007-4470-7

  8. L. Andeobu, S. Wibowo, and S. Grandhi, “Informal E-waste recycling practices and environmental pollution in Africa: what is the way forward?,” Int. J. Hyg. Environ. Health 252, 114192 (2023). https://doi.org/10.1016/j.ijheh.2023.114192

    Article  CAS  Google Scholar 

  9. J. O. Azeez, O. A. Hassan, and P. O. Egunjobi, “Soil contamination at dumpsites: implication of soil heavy metals distribution in municipal solid waste disposal system: a case study of Abeokuta, Southwestern Nigeria,” Soil Sediment Contam. 20 (4), 370–386 (2011). https://doi.org/10.1080/15320383.2011.571312

    Article  CAS  Google Scholar 

  10. K. Bajwa, N. R. Bishnoi, M. Y. Jat Baloch, and S. J. Kumar, “Advancement in algal biomass based biobutanol production technologies and research trends,” in Sustainable Butanol Biofuels, 1st Ed., Ed. by A. Singh, R. Kothari, S. Bajar, and V. V. Tyagi (Routledge and CRC Press, London, 2023), pp. 182–198. https://doi.org/10.1201/9781003165408

  11. S. M. H. Beinabaj, H. Heydariyan, H. M. Aleii, and A. Hosseinzadeh, “Concentration of heavy metals in leachate, soil, and plants in Tehran’s landfill: investigation of the effect of landfill age on the intensity of pollution,” Heliyon 9, e13017 (2023). https://doi.org/10.1016/j.heliyon.2023.e13017

    Article  CAS  Google Scholar 

  12. A. Benhamdoun, H. Achtak, G. Vinti, and A. Dahbi. “Soil contamination by trace metals and assessment of the risks associated: the dumping site of Safi city (Northwest Morocco),” Environ. Monit. Assess. 195, 941 (2023). https://doi.org/10.1007/s10661-023-11467-4

    Article  CAS  Google Scholar 

  13. R. Bešta-Gajević, M. Gajević, S. Pilić, Z. Adžaip, S. Đug, and S. Dahija, “Potential environmental and human health risks caused by heavy metals and pathogens from illegal landfill sites in Bosnia and Herzegovina,” Eur. J. Environ. Sci. 12 (2), 74–79 (2022). https://doi.org/10.14712/23361964.2022.8

    Article  Google Scholar 

  14. L. A. Bezberdaya, N. S. Kasimov, O. V. Chernitsova et al., “Heavy metals and metalloids in soils, road dust, and their PM10 fractions in Sebastopol: levels, sources, and pollution risk,” Eurasian Soil Sci. 55, 1871–1890 (2022). https://doi.org/10.1134/S1064229322601470

    Article  CAS  Google Scholar 

  15. R. K. Bramley, D. G. Bullock, and J. R. Garcia, “Quality control and assessment,” in Clarke’s Analytical Forensic Toxicology, 3rd Ed., Ed. by S. Jickells and A. Negrusz (Pharmaceutical Press, London, 2008), pp. 607–623. http://librodigital.sangregorio.edu.ec/librosusgp/10181.pdf.

    Google Scholar 

  16. J.-F. Briat, C. Dubos, and F. Gaymard, “Iron nutrition, biomass production, and plant product quality,” Trends Plant Sci. 20 (1), 33–40 (2015). https://doi.org/10.1016/j.tplants.2014.07.005

    Article  CAS  Google Scholar 

  17. N. A. Butt, M. Y. Khan, S. A. Khattak, G. Akhter, Y. Ge, M. T. Shah, and A. Farid, “Geophysical and geochemical characterization of solid waste dumpsite: a case study of Chowa Gujar, Peshawar (Part of Indus Basin),” Sustainability 14 (3), 1443 (2022). https://doi.org/10.3390/su14031443

    Article  Google Scholar 

  18. CEPA (Chinese Environmental Protection Administration), Elemental Background Values of Soils in China (Environmental Science Press of China, Beijing, 1990).

    Google Scholar 

  19. A. Chireshe, T. Shabani, and T. Shabani, “Safety and health risks associated with illegal municipal solid waste disposal in urban Zimbabwe: a case of Masvingo City,” Saf. Extrem. Environ. 5, 243–252 (2023). https://doi.org/10.1007/s42797-023-00080-w

    Article  Google Scholar 

  20. J. M. Chisholm, R. Zamani, A. M. Negm, N. Said, M. M. Abdel Daiem, M. Dibaj, and M. Akrami, “Sustainable waste management of medical waste in African developing countries: a narrative review,” Waste Manage. Res. 39 (12), 1149–1163 (2021). https://doi.org/10.1177/0734242X211029175

    Article  CAS  Google Scholar 

  21. A. Çiçek, E. Köse, and C. Tokatli, “Using factor analysis to evaluate sediment quality of a significant mining area in Turkey,” Pol. J. Environ. Stud. 28, 2021–2025 (2019). https://doi.org/10.15244/pjoes/89852

    Article  Google Scholar 

  22. A. Ćirišan, Z. Podraščanin, L. J. Nikolić Bujanović, S. Mrazovac Kurilić, and P. Ilić, “Trend analysis application on near surface SO2 concentration data from 2010 to 2020 in Serbia,” Water, Air, Soil Pollut. 234, 186 (2023). https://doi.org//10.1007/s11270-023-06111-3

    Article  Google Scholar 

  23. F. Dilpazeer, M. Munir, M. Y. Jat Baloch, I. Shafiq, J. Iqbal, M. Saeed, M. M. Abbas, S. Shafique, K. H. H. Aziz, and A. Mustafa, “A comprehensive review of the latest advancements in controlling arsenic contaminants in groundwater,” Water 15, 478 (2023). https://doi.org/10.3390/w15030478

    Article  CAS  Google Scholar 

  24. P. Ekka, S. Patra, M. Upreti, G. Kumar, A. Kumar, and P. Saikia, “Land degradation and its impacts on biodiversity and ecosystem services,” in Land and Environmental Management through Forestry, 1st Ed., Ed. by A. Raj, M. K. Jhariya, A. Banerjee, S. Nema, and K. Bargali (John Wiley & Sons, New Jersey, 2023), Vol. 1, pp. 77–101. https://doi.org/10.1002/9781119910527.ch4

  25. O. E. Essien, “Heavy metal pollution of in-situ and surrounding soils profiles at municipal solid waste dumpsite,” Br. J. Appl. Sci. Technol. 4 (8), 1198–1214 (2014). https://doi.org/10.9734/BJAST/2014/4500

    Article  Google Scholar 

  26. M. O. Eze, “Effect of solid waste source (dumpsite type) on heavy metal contaminations in urban soils of Bauchi, Nigeria,” Am. Chem. Sci. J. 9 (2), 1–14 (2015). https://doi.org/10.9734/ACSJ/2015/18039

    Article  Google Scholar 

  27. A. Faccia, Z. Beebeejaun, and N. R. Mosteanu, “Sustainability activities and business model innovation,” In Corporate Sustainability in Africa: Responsible Leadership, Opportunities, and Challenges, 1st Ed., Ed. by S. Adomako, A. Danso, and A. Boateng (Springer International Publishing, Cham, 2023), pp. 209–228. https://doi.org/10.1007/978-3-031-29273-6_10

  28. Z. U. R. Farooqi, A. A. Qadir, P. Ilić, N. Zeeshan, V. Tunguz, and N. Pržulj, “Restoration and preservation of degraded soils for crop production,” In Environment, 1st Ed., Ed. by P. Ilić, Z. Govedar, and N. Pržulj (Academy of Sciences and Arts of the Republic of Srpska, Banja Luka, 2023), pp. 243–283. https://doi.org/10.7251/EORU2309243F

  29. Z. U. R. Farooqi, A. Zafar, S. Ameen, P. Ilić, L. J. Stojanović Bjelić, and D. Nešković Markić, “Green technologies for saline water treatment,” in Removal of Pollutants from Saline Water, 1st Ed., Ed. by S. Feroz and D. V. Bahnemann (CRC Press, Boca Raton, 2021), pp. 27–49. https://doi.org/10.1201/9781003185437-5

  30. Z. U. R. Farooqi, M. M. Hussain, M. A. Ayub, A. A. Qadir, and P. Ilić, “Potentially toxic elements and phytoremediation: opportunities and challenges,” in Phytoremediation: Biotechnological Strategies for Promoting Invigorating Environs, 1st Ed., Ed. by R. A. Bhat, F. M. P. Tonelli, G. H. Dar, and K. Hakeem (Academic Press, Cambridge, 2022), pp. 19–36. https://doi.org/10.1016/B978-0-323-89874-4.00020-0

  31. B. Fonge, E. N. Nkoleka, F. Z. Asong, S. A. Ajonina, and V. Che, “Heavy metal contamination in soils from a municipal landfill, surrounded by banana plantation in the eastern flank of Mount Cameroon,” Afr. J. Biotechnol. 16, 1391–1399 (2017). https://doi.org/10.5897/AJB2016.15777

    Article  CAS  Google Scholar 

  32. A. Franco-Uría, C. López-Mateo, E. Roca, and M. L. Fernández-Marcos, “Source identification of heavy metals in pastureland by multivariate analysis in NW Spain,” J. Hazard. Mater. 165 (1–3), 1008–1015 (2009). https://doi.org/10.1016/j.jhazmat.2008.10.118

    Article  CAS  Google Scholar 

  33. A. Ghasemi and S. Zahediasl, “Normality tests for statistical analysis: a guide for nonstatisticians,” Int. J. Endocrinol. Metab. 10, 486 (2012). https://doi.org/10.5812/ijem.3505

    Article  Google Scholar 

  34. Y. Guan, C. Shao, and M. Ju, “Heavy metal contamination assessment and partition for industrial and mining gathering areas,” Int. J. Environ. Res. Public Health 11, 7286–7303 (2014). https://doi.org/10.3390/ijerph110707286

    Article  CAS  Google Scholar 

  35. L. Hakanson, “An ecological risk index for aquatic pollution control: a sedimentological approach.” Water Res. 14, 975–1001 (1980). https://doi.org/10.1016/0043-1354(80)90143-8

    Article  Google Scholar 

  36. M. Harris, P. Masi, M. Worboys, and P. Witherington, Guidance on Comparing Soil Contamination Data with a Critical Concentration (CIEH & CL, Aire, 2008). www.claire.co.uk/component/phocadownload/category/9-other-cl-aire-documents?download=153:guidance-on-comparing-soil-contamination-data-with-a-critical-concentration. Cited September 25, 2023.

  37. T. Hettipathirana, Determination of Metals in Soils using the 4100 MP-AES. https://hpst.cz/sites/default/files/oldfiles/5990-8914en-appnote-4100mp-aes-soils.pdf. Cited September 25, 2023.

  38. X. Huang, D. Luo, D. Zhao, N. Li, T. Xiao, J. Liu, L. Wei, Y. Liu, L. Liu, and G. Liu, “Distribution, source and risk assessment of heavy metal(oid)s in water, sediments, and corbicula fluminea of Xijiang River, China,” Int. J. Environ. Res. Public Health 16, 1823 (2019). https://doi.org/10.3390/ijerph16101823

    Article  CAS  Google Scholar 

  39. P. Ilić and T. Maksimović, Air Pollution and Biodiversity (Pan-European University “Apeiron”, Banja Luka, 2021). https://doi.org/10.5281/zenodo.10443292

  40. P. Ilić, D. Nešković Markić, L. J. Stojanović Bjelić, and Z. U. R. Farooqi, “Polycyclic aromatic hydrocarbons in different layers of soil and groundwater - evaluation of levels of pollution and sources of contamination,” Pol. J. Environ. Stud. 30, 1191–1201 (2021). https://doi.org/10.15244/pjoes/125565

    Article  CAS  Google Scholar 

  41. P. Ilić, D. Nešković-Markić, and L. J. Stojanović Bjelić, “Variation concentration of sulfur dioxide and correlation with meteorological parameters,” Arch. Tech. Sci. 18, 81–88 (2018). https://doi.org/10.7251/afts.2018.1018.081I

    Article  Google Scholar 

  42. P. Ilić, S. Ilić, D. Nešković Markić, L. J. Stojanović Bjelić, Z. Popović, B. Radović, S. Mrazovac Kurilić, Z. U. R. Farooqi, T. Mehmood, M. H. Mohamed, and S. Kouadri, “Ecological risk of toxic metal contamination in soil around coal mine and thermal power plant,” Pol. J. Environ. Stud. 31, 4147–4156 (2022). https://doi.org/10.15244/pjoes/148071

    Article  CAS  Google Scholar 

  43. P. Ilić, S. Ilić, D. Nešković Markić, L. J. Stojanović Bjelić, Z. U. R. Farooqi, B. Sole, and N. Adimalla, “Source identification and ecological risk of polycyclic aromatic hydrocarbons in soils and groundwater,” Ecol. Chem. Eng. S. 28, 355–363 (2021). https://doi.org/10.2478/eces-2021-0024

    Article  CAS  Google Scholar 

  44. P. Ilić, S. Tepić, and L. J. Erić, “Municipal waste landfill as a source of pollution and impact on human health,” Mater. Socio Med.-J. Soc. Soc. Med.-Public Health B&H 19, 50–52 (2007).

    Google Scholar 

  45. P. Ilić, T. Nišić, and Z. U. R. Farooqi, “Occurrence of specific polychlorinated biphenyls congeners in an industrial zone,” Pol. J. Environ. Stud. 30, 635–643 (2021). https://doi.org/10.15244/pjoes/123607

    Article  CAS  Google Scholar 

  46. P. Ilić, T. Nišić, and Z. U. R. Farooqi, “Polycyclic aromatic hydrocarbons contamination of soil in an industrial zone and evaluation of pollution sources,” Pol. J. Environ. Stud. 30, 635–643 (2021). https://doi.org//10.15244/pjoes/119095

    Article  Google Scholar 

  47. P. Ilić, T. Nišić, S. Ilić, and L. J. Stojanović Bjelić, “Identifying new ‘hotspot’ heavy metal contamination in industrial zone soil,” Pol. J. Environ. Stud. 29, 2987–2993 (2020). https://doi.org/10.15244/pjoes/113095

    Article  CAS  Google Scholar 

  48. P. Ilić, Z. Govedar, and V. Trkulja, “Environmental protection between pollution, protection and legislation,” in Environment, Ed. by P. Ilić, Z. Govedar, and N. Pržulj, 1st Ed. (Academy of Sciences and Arts of the Republic of Srpska, Banja Luka, 2023), pp. 1–42. https://doi.org/10.7251/EORU2309001I

  49. P. Ilić, Z. Popović, and D. Nešković Markić, “Assessment of meteorological effects and ozone variation in urban area,” Ecol. Chem. Eng. S 27, 373–385 (2020). https://doi.org/10.2478/eces-2020-0024

    Article  CAS  Google Scholar 

  50. P. Ilić, Z. Popović, D. Nešković Markić, L. J. Stojanović Bjelić, and Z. U. R. Farooqi, “Evaluation of ambient air quality as a component of the environment,” in Environment, 1st Ed., Ed. by P. Ilić, Z. Govedar, and N. Pržulj (Academy of Sciences and Arts of the Republic of Srpska, Banja Luka, 2023), pp. 133‒167. https://doi.org/10.7251/EORU2309133I

  51. P. Ilić, Z. Popović, and S. Gotovac-Atlagić, “Effects of meteorological variables on nitrogen dioxide variation,” Arch. Tech. Sci. 20, 65–72 (2019). https://doi.org/10.7251/afts.2019.1120.065I

    Article  Google Scholar 

  52. U. Imran, A. Ullah, and K. Shaikh, “Pollution loads and ecological risk assessment of metals and a metalloid in the surface sediment of Keenjhar Lake, Pakistan,” Pol. J. Environ. Stud. 29, 3629–3641 (2020). https://doi.org/10.15244/pjoes/117659

    Article  CAS  Google Scholar 

  53. E. Ingwani, M. Thynell, L. R. Gurure, N. G. Ekelund, T. Gumbo, P. Schubert, and V. Nel, “The impacts of peri-urban expansion on municipal and ecosystem services: experiences from Makhado Biaba Town, South Africa,” Urban Forum, 1–31 (2023). https://doi.org/10.1007/s12132-023-09499-7

  54. List of Municipal and Illegal Landfills of Household Waste in the Region Bijeljina-Zvornik (2022), Institute for Protection and Ecology of the Republic of Srpska, Project Upgrading of the Waste Management Public Service Capacities in Cross Border Region (CBC SRB-BiH 2014-2020).

  55. J. Iqbal, C. Su, M. Wang, H. Abbas, M. Y. Jat Baloch, J. Ghani, Z. Ullah, and M. E. Huq, “Groundwater fluoride and nitrate contamination and associated human health risk assessment in South Punjab, Pakistan,” Environ. Sci. Pollut. Res. 30, 61606–61625 (2023). https://doi.org/10.1007/s11356-023-25958-x

    Article  CAS  Google Scholar 

  56. ISO 11466, Soil Quality—Extraction of Trace Elements Soluble in Aqua Regia (1995). https://www.iso.org/standard/19418.html. Cited September 25, 2023.

  57. IUSS Working Group WRB, World Reference Base for Soil Resources 2014, Update 2015, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, World Soil Resources Reports No. 106 (UN Food and Agriculture Organization, Rome, 2015). https://www.fao.org/3/i3794en/I3794en.pdf.

  58. M. Y. Jat Baloch, W. Zhang, B. A. Shoumik, A. Nigar, A. E. Elshekh, M. O. Bashir, A. F. M. S. Ebrahim, K. A. Adam Mohamed, and J. Iqbal, “Hydrogeochemical mechanism associated with land use land cover indices using geospatial, remote sensing techniques, and health risks model,” Sustainability 14, 16768 (2022). https://doi.org/10.3390/su142416768

    Article  CAS  Google Scholar 

  59. M. Y. Jat Baloch and S. H. Mangi, “Treatment of synthetic greywater by using banana, orange and sapodilla peels as a low cost activated carbon,” J. Mater. Environ. Sci. 10, 966–986 (2019). http://www.jmaterenvironsci.com/.

    Google Scholar 

  60. M. Y. Jat Baloch, C. Su, S. A. Talpur, J. Iqbal, and K. Bajwa, “Arsenic removal from groundwater using iron pyrite: influence factors and removal mechanism,” J. Earth Sci. 34, 857–867 (2023). https://doi.org/10.1007/s12583-022-1698-x

    Article  CAS  Google Scholar 

  61. M. Y. Jat Baloch, S. A. Talpur, H. A. Talpur, J. Iqbal, S. H. Mangi, and S. Memon, “Effects of arsenic toxicity on the environment and its remediation techniques: a review,” J. Water Environ. Technol. 18, 275–289 (2020). https://doi.org/10.2965/jwet.19-130

    Article  Google Scholar 

  62. M. Y. Jat Baloch, S. A. Talpur, J. Iqbal, M. Munir, K. Bajwa, P. Baidya, and H. A. Talpur, “Review paper process design for biohydrogen production from waste materials and its application,” Sustainable Environ. 7, 1 (2022). https://doi.org/10.22158/se.v7n1p47

    Article  Google Scholar 

  63. M. Y. Jat Baloch, W. Zhang, D. Zhang, B. A. Al Shoumik, J. Iqbal, S. Li, J. Chai, M. A. Farooq, and A. Parkash, “Evolution mechanism of arsenic enrichment in groundwater and associated health risks in southern Punjab, Pakistan,” Int. J. Environ. Res. Public Health 19, 13325 (2022). https://doi.org/10.3390%2Fijerph192013325

    Article  CAS  Google Scholar 

  64. M. Y. Jat Baloch, W. Zhang, J. Chai, S. Li, M. Alqurashi, G. Rehman, A. Tariq, S. A. Talpur, J. Iqbal, M. Munir, and E. E. Husein, “Shallow groundwater quality assessment and its suitability analysis for drinking and irrigation purposes,” Water 13, 3361 (2021). https://doi.org/10.3390/w13233361

    Article  CAS  Google Scholar 

  65. M. Y. Jat Baloch, W. Zhang, T. Sultana, M. Akram, B. A. Al Shoumik, M. Z. Khan, and M. A. Farooq, “Utilization of sewage sludge to manage saline-alkali soil and increase crop production: is it safe or not?,” Environ. Technol. Innovation 32, 103266 (2023). https://doi.org/10.1016/j.eti.2023.103266

    Article  CAS  Google Scholar 

  66. C. Jin, Y. Ye, and S. Zheng, “An underground tale: contribution of microbial activity to plant iron acquisition via ecological processes,” Ann. Bot. 113 (1), 7–18 (2014). https://doi.org/10.1093/aob/mct249

    Article  CAS  Google Scholar 

  67. G. M. Kashulina, “Extreme pollution of soils by emissions of the copper–nickel industrial complex in the Kola Peninsula,” Eurasian Soil Sci. 50, 837–849 (2017). https://doi.org/10.1134/S1064229317070031

    Article  CAS  Google Scholar 

  68. G. M. Kashulina, “Monitoring of soil contamination by heavy metals in the impact zone of copper–nickel smelter on the Kola Peninsula,” Eurasian Soil Sci. 51, 467–478 (2018). https://doi.org/10.1134/S1064229318040063

    Article  CAS  Google Scholar 

  69. G. R. Kassenga and S. E. Mbuligwe, “Impacts of a solid waste disposal site on soil, surface water and groundwater quality in Dar es Salaam City, Tanzania,” J. Sustainable Dev. Afr. 10 (4), 73–94 (2009).

    Google Scholar 

  70. A. Keshavarzi and V. Kumar, “Spatial distribution and potential ecological risk assessment of heavy metals in agricultural soils of Northeastern Iran,” Geol. Ecol. Landscapes 4, 103–187 (2020). https://doi.org/10.1080/24749508.2019.1587588

    Article  Google Scholar 

  71. S. Khurana and A. Kumar, “Translational transport of e-waste and implications on human well beings and the environment,” in Waste Management and Resource Recycling in the Developing World, 1st Ed., Ed. by P. Singh, P. Verma, R. Singh, A. Ahamad, and A. C. Batalhão (Elsevier, Amsterdam, 2023), pp. 125–142. https://doi.org/10.1016/B978-0-323-90463-6.00033-6

  72. L. V. Kochian, M. A. Piñeros, and J. Liu, “Plant adaptation to acid soils: the molecular basis for crop aluminum resistance,” Annu. Rev. Plant Biol. 66, 571–598 (2015). https://doi.org/10.1146/annurev-arplant-043014-114822

    Article  CAS  Google Scholar 

  73. G. N. Koptsik, S. V. Koptsik, I. E. Smirnova, et al., “Effect of soil degradation and remediation in technogenic barrens on the uptake of nutrients and heavy metals by plants in the Kola Subarctic,” Eurasian Soil Sci. 54, 1252–1264 (2021). https://doi.org/10.1134/S106422932108010X

    Article  CAS  Google Scholar 

  74. N. E. Kosheleva, E. M. Nikiforova, and I. V. Timofeev, “Pollution with heavy metals and metalloids and ecological status of soils in Severobaikal’sk,” Eurasian Soil Sci. 55, 587–600 (2022). https://doi.org/10.1134/S1064229322050040

    Article  CAS  Google Scholar 

  75. R. Kumar, A. Parkash, S. Almani, M. Y. Jat Baloch, R. Khan, and S. A. Soomro, “Synthesis of porous cobalt oxide nanosheets: highly sensitive sensors for the detection of hydrazine,” Funct. Compos. Struct. 4, 035002 (2022). https://doi.org/10.1088/2631-6331/ac8595

    Article  CAS  Google Scholar 

  76. V. Kumar, A. Sharma, P. Kaur, G. P. S. Sidhu, A. S. Bali, R. Bhardwaj, et al., “Pollution assessment of heavy metals in soils of India and ecological risk assessment: a state-of-the-art,” Chemosphere 216, 449–462 (2019). https://doi.org/10.1016/j.chemosphere.2018.10.066

    Article  CAS  Google Scholar 

  77. D. V. Ladonin and A. P. Mikhaylova, “Heavy metals and arsenic in soils and street dust of the southeastern administrative district of Moscow: long-term data,” Eurasian Soil Sci. 53, 1635–1644 (2020). https://doi.org/10.1134/S1064229320110095

    Article  CAS  Google Scholar 

  78. A. Lepirica, Ž. Stjepić-Srkalović, and D. Srkalović, “Geomorphical meso-entity Semberija lowland plain,” J. Fac. Min. Geol. Civ. Eng. 10, 9–18 (2022). https://doi.org/10.51558/2303-5161.2022.10.10.9

    Article  Google Scholar 

  79. M. Li, H. Zhou, X. Li, et al., “Remediation of contaminated soil with compound heavy metals using an array-electrode electrokinetics coupled with permeable reactive barrier system with different electrolytes,” Eurasian Soil Sci. 55, 1939–1953 (2022). https://doi.org/10.1134/S1064229322601469

    Article  CAS  Google Scholar 

  80. C. W. Liu, K. H. Lin, and Y. M. Kuo, “Application of factor analysis in the assessment of groundwater quality in a Blackfoot disease area in Taiwan,” Sci. Total Environ. 313, 77–89 (2003). https://doi.org/10.1016/S0048-9697(02)00683-6

    Article  CAS  Google Scholar 

  81. Z. Long, Y. Huang, W. Zhang, Z. Shi, D. Yu, Y. Chen, C. Liu, and R. Wang, “Effect of different industrial activities on soil heavy metal pollution, ecological risk, and health risk,” Environ. Monit. Assess. 193, 20 (2021). https://doi.org/10.1007/s10661-020-08807-z

    Article  CAS  Google Scholar 

  82. S. Lu, Y. Teng, Y. Wang, J. Wu, and J. Wang, “Research on the ecological risk of heavy metals in the soil around a Pb–Zn mine in Huize County, China,” Chin. J. Geochem. 34, 540–549 (2015). https://doi.org/10.1007/s10661-020-08807-z

    Article  CAS  Google Scholar 

  83. B. T. Luc, D. Ali, K. Niéssan, O. Soumaila, and F. Zougmoré, “Assessment of heavy metals contamination in controlled and uncontrolled landfill soil, Ouagadougou, Burkina Faso,” Am. J. Environ. Sci. 16, 79–84 (2020). https://doi.org/10.3844/ajessp.2020.79.84

    Article  CAS  Google Scholar 

  84. Y. Lv, G. K. Kabanda, Y. Chen, C. Wu, and W. Li, “Spatial distribution and ecological risk assessment of heavy metals in manganese (Mn) contaminated site,” Front. Environ. Sci. 10, 942544. (2022). https://doi.org/10.3389/fenvs.2022.942544

    Article  Google Scholar 

  85. J. F. Ma, P. R. Ryan, and E. Delhaize, “Aluminium tolerance in plants and the complexing role of organic acids,” Trends Plant Sci. 6 (6), 273–278 (2001). https://doi.org/10.1016/S1360-1385(01)01961-6

    Article  CAS  Google Scholar 

  86. Manual Seton Hall University Department of Psychology. https://www.shu.edu/psychology/upload/JASP-Manual_SHU-RD-A_9-1-18.pdf. Cited September 25, 2023.

  87. R. Mary, R. Nasir, A. Alam, A. Tariq, R. Nawaz, S. Javied, Q. Zaman, F. Islam, and S. N. Khan. “Exploring hazard quotient, cancer risk, and health risks of toxic metals of the Mehmood Booti and Lakhodair landfill groundwaters, Pakistan,” Environ. Nanotechnol. Monit. Manage. 20, 100838 (2023). https://doi.org/10.1016/j.enmm.2023.100838

    Article  CAS  Google Scholar 

  88. B. K. Mavakala, P. Sivalingam, A. Laffite, C. K. Mulaji, G. Giuliani, P. T. Mpiana, and J. Poté, “Evaluation of heavy metal content and potential ecological risks in soil samples from wild solid waste dumpsites in developing country under tropical conditions,” Environ. Challenges 7, 100461 (2022). https://doi.org/10.1016/j.envc.2022.100461

    Article  CAS  Google Scholar 

  89. F. Meng, N. Ding, and Y. Sun, “Assessment of heavy metal pollution in Chinese suburban farmland,” Pol. J. Environ. Stud. 23 (6), 447–454 (2014).

    Google Scholar 

  90. R. M. Mhammedsharif and K. Y. Kolo, “A case study of environmental pollution by pathogenic bacteria and metal(oid)s at Soran Landfill Site, Erbil, Iraqi Kurdistan Region,” Environ. Monit. Assess. 195, 811 (2023). https://doi.org/10.1007/s10661-023-11352-0

    Article  CAS  Google Scholar 

  91. H. W. Mielke and P. L. Reagan, “Soil is an important pathway of human lead exposure,” Environ. Health Perspect. 106 (1), 217–229 (1998). https://doi.org/10.1289/ehp.98106s1217

    Article  CAS  Google Scholar 

  92. T. Mišlicki Tomić and V. Rajčević, “Directions and tendencies of migration of the population into urban areas of the Republic of Srpska,” Urbana 22, 9–25 (2021). https://doi.org/10.47785/urbana.2.2021

    Article  Google Scholar 

  93. D. Nešković Markić, D. Bjelić, L. J. Stojanović Bjelić, and P. Ilić, “Municipal waste management in Republic of Srpska: current and future challenges,” Iin Environment, 1st Ed., Ed. by P. Ilić, Z. Govedar, and N. Pržulj (Academy of Sciences and Arts of the Republic of Srpska, Banja Luka, 2023), pp. 377‒402. https://doi.org/10.7251/EORU2309377M

  94. D. Nešković Markić, H. Stevanović Čarapina, D. Bjelić, L. J. Stojanović Bjelić, P. Ilić, Ž. Šobot Pešić, and O. Kikanovicz, “Using material flow analysis for waste management planning,” Pol. J. Environ. Stud. 28, 255–265 (2019). https://doi.org/10.15244/pjoes/78621

    Article  CAS  Google Scholar 

  95. J. M. Njagi, D. N. Akunga, M. M. Njagi, M. P. Ngugi, and E. M. Njagi, “Heavy metal concentration in vegetables grown around dumpsites in Nairobi City County, Kenya,” World Environ. 7 (2), 49–56 (2017).

    Google Scholar 

  96. I. G. Okunzuwa and B. Yaou, “Studies in the heavy metal content in soil hospital waste dumpsite,” J. Sci. Technol. 5, 160–165 (2023). https://doi.org/10.5281/zenodo.8014306

    Article  Google Scholar 

  97. O. F. Oladejo, L. T. Ogundele, S. O. Inuyomi, S. F. Olukotun, M. A. Fakunle, and O. O. Alabi, “Heavy metals concentrations and naturally occurring radionuclides in soils affected by and around a solid waste dumpsite in Osogbo metropolis, Nigeria,” Environ. Monit. Assess. 193, 1–13 (2021). https://doi.org/10.1007/s10661-021-09480-6

    Article  CAS  Google Scholar 

  98. I. O. Plekhanova, O. A. Zolotareva, I. D. Tarasenko, and A. S. Yakovlev, “Assessment of ecotoxicity of soils contaminated by heavy metals,” Eurasian Soil Sci. 52, 1274–1288 (2019). https://doi.org/10.1134/S1064229319100089

    Article  CAS  Google Scholar 

  99. M. Radomirović, Ž. Ćirović, D. Maksin, T. Bakić, J. Lukić, S. Stanković, et al., “Ecological risk assessment of heavy metals in the soil at a former painting industry facility,” Front. Environ. Sci. 8, 560415 (2020). https://doi.org/10.3389/fenvs.2020.560415

    Article  Google Scholar 

  100. B. Radović, P. Ilić, Z. Popović, J. Vuković, and S. Smiljanić, “Air quality in the town of Bijeljina-trends and levels of SO2 and NO2 concentrations,” Qual. Life. 22, 46–57 (2022). https://doi.org/10.7251/QOL2201046R

    Article  Google Scholar 

  101. N. Ravankhah, R. Mirzaei, and S. Masoum, “Spatial eco-risk assessment of heavy metals in the surface soils of industrial city of Aran-o-Bidgol, Iran,” Bull. Environ. Contam. Toxicol. 96, 516–523 (2016). https://doi.org/10.1007/s00128-016-1761-3

    Article  CAS  Google Scholar 

  102. Region of Bijeljina. https://shorturl.at/gOT58. Cited September 25, 2023.

  103. Regulation on Limit and Remediation Values of Polluting, Harmful and Dangerous Substances in the Soil (Official Gazette of the Republic of Srpska, number 82/21).

  104. Rulebook on Limit and Remediation Values of Pollutants, Harmful and Dangerous Substances in Soil (Official Gazette of the Republic of Srpska, No. 82/21) (2021).

  105. S. Sadeq and H. A. Mohammad, “Impact of leachate on soil and groundwater quality in vicinity of landfill sites of Kirkuk City (Kirkuk-Iraq),” Int. J. Curr. Res. Acad. Rev. 4 (8), 1–21 (2016). https://doi.org/10.20546/IJCRAR.2016.408.001

    Article  CAS  Google Scholar 

  106. A. Saraswat, S. Ram, S. Kouadri, M. B. Raza, H. C. Hombegowda, R. Kumar, D. Golui, K. Maurya, P. Ilić, M. M. Rahman, and R. K. Jena. “Groundwater quality, fluoride health risk and geochemical modelling for drinking and irrigation water suitability assessment in Tundla block, Uttar Pradesh, India,” Groundwater Sustainable Dev. 23, 100915 (2023). https://doi.org/10.1016/j.gsd.2023.100991

    Article  Google Scholar 

  107. V. M. Semenov, A. S. Tulina, N. A. Semenova, and L. A. Ivannikova, “Humification and nonhumification pathways of the organic matter stabilization in soil: a review,” Eurasian Soil Sci. 46 (4), 355–368 (2013). https://doi.org/10.1134/S106422931304011X

    Article  CAS  Google Scholar 

  108. S. S. Shapiro and M. B. Wilk, “An analysis of variance test for normality (complete samples),” Biometrika 52, 591–611 (1965). https://doi.org/10.2307/2333709

    Article  Google Scholar 

  109. R. K. Sharma, M. Agrawal, and F. Marshall, “Heavy metals in vegetables collected from production and market sites of a tropical urban area of India,” Food Chem. Toxicol. 48 (3), 620–625 (2020). https://doi.org/10.1016/j.fct.2008.12.016

    Article  CAS  Google Scholar 

  110. A. Siddiqua, J. N. Hahladakis, and W. A. K. Al-Attiya, “An overview of the environmental pollution and health effects associated with waste landfilling and open dumping.” Environ. Sci. Pollut. Res. 29, 58514–58536 (2022). https://doi.org/10.1007/s11356-022-21578-z

    Article  Google Scholar 

  111. A. Singh, R. K. Sharma, M. Agrawal, and F. M. Marshall, “Health risk assessment of heavy metals via dietary intake of foodstuffs from the wastewater irrigated site of a dry tropical area of India,” Food Chem. Toxicol. 48 (2), 611–619 (2010). https://doi.org/10.1016/j.fct.2009.11.041

    Article  CAS  Google Scholar 

  112. L. J. Stojanović Bjelić, D. Nešković Markić, and P. Ilić, “Water quality and protection,” in Environment, 1st Ed., Ed. by P. Ilić, Z. Govedar, and N. Pržulj (Academy of Sciences and Arts of the Republic of Srpska, Banja Luka, 2023), pp. 43–67. https://doi.org/10.7251/EORU2309043B

  113. L. J. Stojanović Bjelić, D. Nešković Markić, P. Ilić, and Z. U. R. Farooqi, “Polycyclic aromatic hydrocarbons in soils in industrial areas: concentration and risks to human health,” Pol. J. Environ. Stud. 31, 595–608 (2022). https://doi.org/10.15244/pjoes/137785

    Article  CAS  Google Scholar 

  114. L. J. Stojanović Bjelić, D. Nešković Markić, P. Ilić, Z. U. R. Farooqi, and H. Munawar, “Characteristics of saline water and health impact,” in Removal of Pollutants from Saline Water, Ed. by S. Feroz and D. V. Bahnemann (CRC Press, Boca Raton, 2021). https://doi.org/10.1201/9781003185437-3 (2021).

  115. S. A. Talpur, T. M. Noonari, A. Rashid, A. Ahmed, M. Y. Jat Baloch, H. A. Talpur, and M. H. Soomro, “Hydrogeochemical signatures and suitability assessment of groundwater with elevated fluoride in unconfined aquifers Badin District, Sindh, Pakistan,” SN Appl. Sci. 2, 1038 (2020). https://doi.org/10.1007/s42452-020-2821-1

    Article  CAS  Google Scholar 

  116. S. R. Taylor and S. M. McLennan, “The geochemical evolution of the continental crust,” Rev. Geophys. 33 (2), 241–265 (1995). https://doi.org/10.1029/95RG00262

    Article  Google Scholar 

  117. V. A. Terekhova, E. V. Prudnikova, A. P. Kiryushina, et al., “Phytotoxicity of heavy metals in contaminated podzolic soils of different fertility levels,” Eurasian Soil Sci. 54, 964–974 (2021). https://doi.org/10.1134/S1064229321060132

    Article  CAS  Google Scholar 

  118. D. L. Tomlinson, J. G. Wilson, C. R. Harris, and D. W. Jeffrey, “Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index,” Helgol. Meer. 33, 566–575 (1980). https://doi.org/10.1007/BF02414780

    Article  Google Scholar 

  119. I. Ur Rehman, M. Ishaq, L. Ali, S. Khan, I. Ahmad, I. U. Din, and H. Ullah, “Enrichment, spatial distribution of potential ecological and human health risk assessment via toxic metals in soil and surface water ingestion in the vicinity of Sewakht mines, district Chitral, Northern Pakistan.” Ecotoxicol. Environ. Saf. 154, 127–136 (2018). https://doi.org/10.1016/j.ecoenv.2018.02.033

    Article  CAS  Google Scholar 

  120. N. Vig, K. Ravindra, and S. Mor, “Heavy metal pollution assessment of groundwater and associated health risks around coal thermal power plant, Punjab, India,” Int. J. Environ. Sci. Technol. 20, 6259–6274 (2022). https://doi.org/10.1007/s13762-022-04284-8

    Article  CAS  Google Scholar 

  121. Q. Wu, W. Hu, H. Wang, P. Liu, X. Wang, and B. Huang, “Spatial distribution, ecological risk and sources of heavy metals in soils from a typical economic development area, Southeastern China,” Sci. Total Environ. 780, 146557 (2021). https://doi.org/10.1016/j.scitotenv.2021.146557

    Article  CAS  Google Scholar 

  122. J. Zhang, J. Zeng, S. Tian, et al., “Ageing of Pb in farmland soil near an ionic rare Earth mine,” Eurasian Soil Sci. 56, 1172–1177 (2023). https://doi.org/10.1134/S1064229323600525

    Article  Google Scholar 

  123. J. Zhang, S. Tian, J. Zeng, et al., “Analysis of the sources and risk assessment of heavy metals in the soil of an ion-type rare Earth mining area in Southern Jiangxi,” Eurasian Soil Sci. 56, 1522–1531 (2023). https://doi.org/10.1134/S106422932360077X

    Article  CAS  Google Scholar 

  124. W. Zhang, J. Chai, S. Li, X. Wang, S. Wu, Z. Liang, M. Y. Jar Baloch, L. F. Silva, and D. Zhang, “Physiological characteristics, geochemical properties and hydrological variables influencing pathogen migration in subsurface system: what we know or not?,” Geosci. Front. 13, 101346 (2022). https://doi.org/10.1016/j.gsf.2021.101346

    Article  CAS  Google Scholar 

  125. W. Zhang, Y. Zhu, R. Gu, Z. Liang, W. Xu, and M. Y. Jat Baloch, “Health risk assessment during in situ remediation of Cr (VI)-contaminated groundwater by permeable reactive barriers: a field-scale study,” Int. J. Environ. Res. Public Health 19, 13079 (2022). https://doi.org/10.3390/ijerph192013079

    Article  CAS  Google Scholar 

  126. Y. Zhao, Z. Wang, W. Sun, B. Huang, X. Shi, and J. Ji, “Spatial interrelations and multi-scale sources of soil heavy metal variability in a typical urban-rural transition area in Yangtze River Delta region of China,” Geoderma 156 (3–4), 216–227 (2010). https://doi.org/10.1016/j.geoderma.2010.02.020

    Article  CAS  Google Scholar 

  127. X. Zheng-Qi, N. Shi-Jun, T. Xian-Guo, and Z. Cheng-Jiang, “Calculation of heavy metals’ toxicity coefficient in the evaluation potential ecological risk index,” Environ. Sci. Technol. 31, 112–115 (2008).

    Google Scholar 

Download references

Funding

This work was supported by the Upgrading of the waste management public service capacities in the cross-border region, project no. CBC SRB-BiH 2014-2020. Research was conducted entirely with the equipment from the PSRI Institute for Protection and Ecology of the Republic of Srpska.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Ilić.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

Statement when using Artificial Intelligence tools in writing this article: In preparing this paper, the authors used ChatGPT in order to translate the text into English. After using this tool/service, the authors have reviewed and edited the content as necessary and take full responsibility for the content of the publication.

This work does not contain any studies involving human and animal subjects.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilić, P., Ilić, S., Mushtaq, Z. et al. Assessing the Ecological Risks and Spatial Distribution of Heavy Metal Contamination at Solid Waste Dumpsites. Eurasian Soil Sc. (2024). https://doi.org/10.1134/S1064229324700303

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1064229324700303

Keywords:

Navigation