Skip to main content
Log in

Use of δ13С Variations in Organic Matter of Paleosols of Western Transbaikalia for Reconstruction of Paleoprecipitation Dynamics in the Late Glacial and Holocene

  • SOIL CHEMISTRY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Analysis of the stable carbon isotopic composition (δ13C) of soil organic matter is important for assessing past climate changes and the response of landscape components to them. Soils of nine soil-sedimentary sequences formed in various landscape and geomorphological conditions of western Transbaikalia have been studied. The time of their formation covers the last 15 kyr. The phases of pedogenesis within genetically different landforms were rather synchronous, which enabled us to suppose that they were caused by regional landscape-climatic changes, which also affected δ13C of soil organic matter. The range of variations in δ13С values is from –20.99 to –27.00‰. Changes in δ13С over time are the most contrasting for sections formed under driest steppe conditions and are the smallest for sections in taiga landscapes with the greatest precipitation. However, in general, the trends of changes in δ13С in different landscape zones over time are similar: the lowest δ13С values are typical for organic matter of Late Glacial paleosols formed 14–15 and 12 kyr BP, as well as for soils of the Late Holocene (3.5–2.0 and 1.0–0.3 kyr BP). Organic matter of soils of the Middle Holocene (9.0–4.0 kyr BP) and of the time interval of 13–14 kyr BP is enriched in 13C. Based on the identified dependence of δ13C in organic matter of modern soils in the region on the amount of precipitation, we have quantitatively reconstructed precipitation during the past growing seasons. The data obtained enable us to estimate the time intervals of 11.7–10.0 and 4.0–1.5 kyr BP as the most optimal for the formation of soils in Western Transbaikalia. An increase in temperatures and a decrease in atmospheric humidity in Transbaikalia and adjacent areas in the Middle Holocene exerted a negative impact on the pedogenesis intensity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

REFERENCES

  1. Kh. A. Arslanov, Radiocarbon. Geochemistry and Geochronology (Izd. Leningr. Univ., Leningrad, 1987) [in Russian].

    Google Scholar 

  2. O. I. Bazhenova and A. A. Cherkashina, “Holocene morpholithogenesis of the Onon–Torei Plain,” Geogr. Nat. Resour. 43 (4), 351–362 (2022). https://doi.org/10.1134/S1875372822040047

    Article  Google Scholar 

  3. D.-D.B. Bazarov, Cenozoic of Cisbaikal and Western Transbaikal regions (Nauka, Novosibirsk, 1986) [in Russian].

    Google Scholar 

  4. E. V. Bezrukova, S. K. Krivonogov, A. A. Abzaeva, K. E. Vershinin, P. P. Letunova, L. A. Orlova, Kh. Takakhara, N. Mieshi, T. Nakamura, S. M. Krapivina, and K. Kavamuro, “Landscapes and climate of the Cisbaikal region in the Late Glacial and Holocene based on the results of comprehensive studies of peatlands,” Geol. Geofiz. 46 (1), 21–33 (2005).

    Google Scholar 

  5. E. V. Bezrukova and A. V. Belov, “Evolution of vegetation in the northeast of the Leno–Angara Plateau in the Middle and Late Holocene,” Geogr. Prir. Resur., No. 1, 90–98 (2010).https://doi.org/10.1016/j.gnr.2010.03.008

  6. A. F. Vadyunina and Z. A. Korchagina, Methods for Studying the Physical Properties of Soils (Agropromizdat, Moscow, 1986) [in Russian].

    Google Scholar 

  7. G. A. Vorob’eva, Soil as a Chronicle of Natural Events in the Cisbaikal region: Problems of Evolution and Classification of Soils (Izd. Irkutsk. Gos. Univ., Irkutsk, 2010) [in Russian].

    Google Scholar 

  8. L. A. Vorob’eva, Theory and Practice of the Chemical Analysis of Soils (GEOS, Moscow, 2006) [in Russian].

    Google Scholar 

  9. V. A. Golubtsov, “Stable carbon isotopic composition of organic matter of the Late Pleistocene and Holocene soils of the Baikal region,” Eurasian Soil Sci. 53 (6), 724–738 (2020). https://doi.org/10.1134/S1064229320060046

    Article  CAS  Google Scholar 

  10. V. A. Golubtsov, Yu. V. Vanteeva, and N. N. Voropay, “Effect of humidity on the stable carbon isotopic composition of soil organic matter in the Baikal region,” Eurasian Soil Sci. 54 (10), 1463–1474 (2021). https://doi.org/10.1134/S1064229321100069

    Article  CAS  Google Scholar 

  11. V. A. Golubtsov, Yu. V. Ryzhov, and D. V. Kobylkin, Soil Formation and Sedimentation in the Selenga Midlands in the Late Glacial and Holocene (Izd. Inst. Geogr. Sib. Otd. Ross. Akad. Nauk, Irkutsk, 2017) [in Russian].

    Google Scholar 

  12. V. A. Golubtsov and Yu. V. Ryzhov, “Reconstruction of Late Glacial and Holocene landscape-climatic changes in the central Selenga Middle Mountains based on the isotopic composition of organic matter,” Eurasian Soil Sci. 50 (2), 176–184 (2017). https://doi.org/10.1134/S106422931702003X

    Article  CAS  Google Scholar 

  13. V. A. Golubtsov and M. Yu. Opekunova, “Structure and chronology of the formation of floodplain sediments of the rivers of the Belaya River basin,” Geomorfologiya 53 (4), 42–55 (2022). https://doi.org/10.31857/S0435428122040046

    Article  Google Scholar 

  14. V. A. Golubtsov, M. Yu. Opekunova, F. E. Maksimov, and A. Yu. Petrov, “Aeolian processes in forest-steppe landscapes in the Upper Angara region in the Holocene,” Geogr. Nat. Resour. 41 (4), 381–389 (2020). https://doi.org/10.1134/S1875372841040095

    Article  Google Scholar 

  15. V. A. Golubtsov, A. A. Cherkashina, and M. A. Bronnikova, Carbonate Formations in Steppe and Forest-Steppe Soils of the Baikal Region: Genesis, Conditions and Chronology of Formation (Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 2021) [in Russian].

    Google Scholar 

  16. State Geological Map of the Russian Federation. Scale 1 : 1 000 000 (Third Generation). Aldan-Transbaikal Series. Sheet M_48–Ulan-Ude. Explanatory Note (Kartograficheskaya Fabrika Vseross. Nauchno-Issled. Geol. Inst. im. A. P. Karpinskogo, St. Petersburg, 2009a).

  17. L. V. Dan’ko, “Evolution of soils in the ecotone of the taiga and steppe of the Pribaikalye in the Holocene,” Geogr. Prir. Resur., No. 4, 17–25 (2009).

  18. M. A. Erbajeva, A. A. Shchetnikov, A. Yu. Kazansky, G. G. Matasova, F. I. Khenzykhenova, I. A. Filinov, O. D.-Ts. Namzalova, and I. O. Nechaev, “The new Pleistocene Ulan-Zhalga key section in Western Transbaikalia,” Dokl. Earth Sci. 488 (1), 1035–1038 (2019). https://doi.org/10.1134/s1028334x1909023x

    Article  CAS  Google Scholar 

  19. V. M. Zhukov, “Climate,” in Cisbaikalia and Transbaikalia (Nauka, Moscow, 1965), pp. 91–127 [in Russian].

    Google Scholar 

  20. V. S. Zykina and V. S. Zykina, Loess-Soil Sequence and Evolution of Natural Environment and Climate of Western Siberia in the Pleistocene (Akad. Izd. Geo. Novosibirsk, 2012) [in Russian].

    Google Scholar 

  21. V. V. Ivanova, M. A. Erbaeva, A. A. Shchetnikov, A. Yu. Kazansky, G. G. Matasova, N. V. Alekseeva, I. A. Filinov, and M. I. Kuzmin, " The Tologoi key section (Upper Cenozoic, Transbaikalia): reconstruction of the peculiarities and depositional environment,” Russ. Geol. Geophys. 61 (12), 1374–1390 (2020).

    Article  Google Scholar 

  22. M. M. Kononova and N. P. Bel’chikova, “Accelerated methods for determining the humus composition of mineral soils,” Pochvovedenie, No. 10, 75–87 (1961).

    Google Scholar 

  23. S. S. Kostrova, H. Meyer, P. E. Tarasov, E. V. Bezrukova, B. Chapligin, A. Kossler, L. A. Pavlova, and M. I. Kuzmin, “Oxygen isotope composition of diatoms from sediments of Lake Kotokel (Buryatia),” Russ. Geol. Geophys. 57 (8), 1239–1247 (2016). https://doi.org/10.1016/j.rgg.2016.08.009

    Article  Google Scholar 

  24. S. A. Makarov and A. A. Cherkashina, “Study of mudflow activity in the Holocene based on radiocarbon dating data (using the example of the southern Pribaikalye,” Geomorfologiya, No. 1, 96–106 (2020).

    Google Scholar 

  25. Scientific and Applied Reference Book on the Climate of the USSR. Ser. 3. Long-Term Data, Parts 1–6. Vol. 23: Buryat ASSR, Chita Oblast (Gidrometeoizdat, Leningrad, 1989) [in Russian].

  26. Yu. V. Ryzhov and V. A. Golubtsov, “New data on the lithological composition, age and stages of formation of deposits of the first above-floodplain terrace of the Menza River (ancient settlement Ust-Menza-1, Zabaykalsky krai),” in Eurasia in the Cenozoic. Stratigraphy, Paleoecology, Cultures (2018), Vol. 7, pp. 41–50 [in Russian].

    Google Scholar 

  27. Yu. V. Ryzhov, V. A. Golubtsov, N. V. Kulagina, M. Yu. Opekunova, and M. V. Smirnov, “Natural and climatic conditions of sedimentation and soil formation in the Selenga River basin in the Late Glacial and Early Holocene,” in Geography: Development of Science and Education (Asterion; Izd. Ross. Gos. Pedagog. Univ. im A. I. Gertsena, St. Petersburg, 2020), Vol. 1, pp. 472–476 [in Russian].

  28. Yu. V. Ryzhov, V. A. Golubtsov, and M. Yu. Opekunova, “The formation of the Tarbagataika River terraces (Western Transbaikalia) in the Late Glacial and the Holocene,” Geogr. Nar. Resour. 42 (2), 164–171 (2021). https://doi.org/10.1134/S1875372821020116

    Article  Google Scholar 

  29. E. P. Solotchina, E. V. Bezrukova, P. A. Solotchin, O. Shtok and A. N. Zhdanova, “Late Pleistostene-Holocene sedimentation in lakes of central Transbaikalia: implications for climate and environment changes,” Russ. Geol. Geophys. 59 (11), 1419–1432. https://doi.org/10.1016/j.rgg.2018.10.003

  30. V. O. Targulian and T. A. Sokolova, “Soil as a bioinert natural system “reactor”, “memory”, and regulator of biosphere interactions,” Pochvovedenie, No. 1, 34–47 (1996).

    Google Scholar 

  31. I. E. Trofimova, O. P. Osipova, and A. S. Balybina, “Approaches to evaluating climate and ecological resources of Siberia,” Contemp. Probl. Ecol. 12 (5), 444–452 (2019). https://doi.org/10.1134/S1995425519050111

    Article  Google Scholar 

  32. L. L. Ubugunov, I. A. Belozertseva, V. I. Ubugunova, and A. A. Sorokovoy, “Ecological zonation of soils in Lake Baikal basin,” Contemp. Probl. Ecol. 12 (6), 524–533 (2019). https://doi.org/10.1134/S1995425519060106

    Article  Google Scholar 

  33. P. Acton, J. Fox, E. Campbell, H. Rowe, and M. Wilkinson, “Carbon isotopes for estimating soil decomposition and physical mixing in well-drained forest soils,” J. Geophys. Res. Biogeosci. 118 (4), 1532–1545 (2013). https://doi.org/10.1002/2013JG002400

    Article  CAS  Google Scholar 

  34. E. V. Bezrukova, P. E. Tarasov, N. Solovieva, S. K. Krivonogov, and F. Riedel, “Last glacialinterglacial vegetation and environmental dynamics in southern Siberia: chronology, forcing and feedbacks,” Palaeogeogr., Palaeoclimatol., Palaeoecol. 296, 185–198 (2010). https://doi.org/10.1016/j.palaeo.2010.07.020

    Article  Google Scholar 

  35. M. Bliedtner, P. Strobel, J. Struck, M. Prochnow, E. Bazarradnaa, and R. Zech, “Mid to Late Holocene moisture evolution of semi-arid Mongolia and its anti-phase relationship with monsoonal Asia,” Quat. Sci. Rev. 313, 108201 (2023). https://doi.org/10.1016/j.quascirev.2023.108201

    Article  Google Scholar 

  36. D. Brincat, K. Yamada, R. Ishiwatayi, H. Uemura, and H. Naraoka, “Molecular-isotopic stratigraphy of long-chain n-alkanes in Lake Baikal Holocene and glacial age sediments,” Org. Geochem. 31, 287–294 (2000).

    Article  CAS  Google Scholar 

  37. M. Camino-Serrano, M. Tifafi, J. Balesdent, C. Hatté, J. Peñuelas, S. Cornu, and B. Guenet, “Including stable carbon isotopes to evaluate the dynamics of soil carbon in the land-surface model ORCHIDEE,” J. Adv. Model. Earth Syst. 11, 3650–3669 (2019). https://doi.org/10.1029/2018MS001392

    Article  Google Scholar 

  38. S. L. Connin, “Isotopic discrimination during long-term decomposition in an arid land ecosystem,” Soil Biol. Biogeochem. 33 (1), 41–51 (2001).

    Article  CAS  Google Scholar 

  39. C.-T. Chen, H.-C. Lan, J.-Y. Lou, and Y.-C. Chen, “The dry Holocene Megathermal in Inner Mongolia,” Palaeogeogr., Palaeoclimatol., Palaeoecol. 193, 181–200 (2003). https://doi.org/10.1016/S0031-0182(03)00225-6

    Article  Google Scholar 

  40. D. Demske, G. Heumann, W. Granoszewski, M. Nita, K. Mamakowa, P. E. Tarasov, and H. Oberhansli, “Late Glacial and Holocene vegetation and regional climate variability evidenced in high-resolution pollen records from Lake Baikal,” Global Planet. Change 46 (1–4), 275–279 (2005). https://doi.org/10.1016/j.gloplacha.2004.09.020

    Article  Google Scholar 

  41. A. F. Diefendorf, K. E. Mueller, S. L. Wing, P. L. Koch, and K. H. Freeman, “Global patterns in leaf 13C discrimination and implications for studies of past and future climate,” Proc. Natl. Acad. Sci. U. S. A. 107, 5738–5743 (2010). https://doi.org/10.1073/pnas.0910513107

    Article  Google Scholar 

  42. J. R. Ehleringer, “The influence of atmospheric CO2, temperature, and water on the abundance of C3/C4 taxa,” in A History of Atmospheric CO 2  and Its Effects on Plants, Animals and Ecosystems. Ecological Studies (Springer, New York, 2005), pp. 214–231. https://doi.org/10.1007/0-387-27048-5_10

  43. G. D. Farquhar, J. R. Ehleringer, and K. T. Hubick, “Carbon isotope discrimination and photosynthesis,” Annu. Rev. Plant Physiol. Plant Mol. Biol. 40, 503–537 (1989).

    Article  CAS  Google Scholar 

  44. Z. D. Feng, L. X. Wang, Y. H. Ji, L. L. Guo, X. Q. Lee, and S. I. Dworkin, “Climatic dependency of soil organic carbon isotopic composition along the S–N transect from 34° N to 52° N in central-east Asia,” Palaeogeogr., Palaeoclimatol., Palaeoecol. 257, 335–343 (2008). https://doi.org/10.1016/j.palaeo.2007.10.026

    Article  Google Scholar 

  45. Y. Fukumoto, K. Kashima, A. Orkhonselenge, and U. Ganzorig, “Holocene environmental changes in northern Mongolia inferred from diatom and pollen records of peat sediment,” Quat. Int. 254, 83–91 (2012). https://doi.org/10.1016/j.quaint.2011.10.014

    Article  Google Scholar 

  46. V. J. Hare, E. Loftus, A. Jeffrey, and C. Ramsey Bronk, “Atmospheric CO2 effect on stable carbon isotope composition of terrestrial fossil archives,” Nat. Commun. 9, 252 (2018). https://doi.org/10.1038/s41467-017-02691-x

    Article  CAS  Google Scholar 

  47. C. Hatté, P. Antoine, M. Fontugne, A. Lang, D.-D. Rousseau, and L. Zöller, “δ13C of loess organic matter as a potential proxy for paleoprecipitation,” Quat. Res. 55, 33–38 (2001). https://doi.org/10.1006/qres.2000.2191

    Article  Google Scholar 

  48. L. I. Ivanova, L. A. Ivanov, D. A. Ronzhina, P. K. Yudina, S. V. Migalina, T. Shinehuu, G. Tserenkhand, P. Yu. Voronin, O. A. Anenkhonov, S. N. Bazha, and P. D. Gunin, “Leaf traits of C3- and C4-plants indicating climatic adaptation along latitudinal gradient in Southern Siberia and Mongolia,” Flora 254, 122–134 (2019). https://doi.org/10.1016/j.flora.2018.10.008

    Article  Google Scholar 

  49. M. Izuho, F. Iizuka, I. Buvit, and M. Konstantinov, “Problems associated with the age determination of the oldest pottery yielding cultural layers at the Studenoe 1 site, Transbaikal (southern Siberia),” Quat. Int. 608–609, 120–136 (2022). https://doi.org/10.1016/j.quaint.2021.02.002

    Article  Google Scholar 

  50. Y. Jia, G. Wang, Q. Tan, and Z. Chen, “Temperature exerts no influence on organic matter δ13C of surface soil along the 400mm isopleth of mean annual precipitation in China,” Biogeosciences 13, 5057–5064 (2016). https://doi.org/10.5194/bg-13-5057-2016

    Article  CAS  Google Scholar 

  51. E. B. Karabanov, A. A. Prokopenko, D. F. Williams, and G. K. Khursevich, “A new record of Holocene climate change from the bottom sediments of Lake Baikal,” Palaeogeogr., Palaeoclimatol., Palaeoecol. 156 (3/4), 211–224 (2000).

    Article  Google Scholar 

  52. F. Khenzykhenova, N. Dorofeyuk, A. Shchetnikov, G. Danukalova, and V. Bazarova, “Palaeoenvironmental and climatic changes during the Late Glacial and Holocene in the Mongolia and Baikal region: a review,” Quat. Int. 605–606, 300–328 (2021). https://doi.org/10.1016/j.quaint.2021.04.038

    Article  Google Scholar 

  53. M. Klinge and D. Sauer, “Spatial pattern of Late Glacial and Holocene climatic and environmental development in Western Mongolia. A critical review and synthesis,” Quat. Sci. Rev. 210, 26–50 (2019). https://doi.org/10.1016/j.quascirev.2019.02.020

    Article  Google Scholar 

  54. F. Kobe, E. Bezrukova, C. Leipe, A. Shchetnikov, T. Goslar, M. Wagner, S. Kostrova, and P. Tarasov, “Holocene vegetation and climate history in Baikal Siberia reconstructed from pollen records and its implications for archaeology,” Archaeol. Res. Asia 23, 100209 (2020). https://doi.org/10.1016/j.ara.2020.100209

    Article  Google Scholar 

  55. M. J. Kohn, “Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo)ecology and (paleo) climate,” Proc. Natl. Acad. Sci. U. S. A. 107, 19691–19695 (2010). https://doi.org/10.1073/pnas.1004933107

    Article  Google Scholar 

  56. X. Lee, Z. Feng, L. Guo, L. Wang, L. Jin, Y. Huang, M. Chopping, D. Huang, W. Jiang, Q. Jiang, and H. Cheng, “Carbon isotope of bulk organic matter: A proxy for precipitation in the arid and semiarid central East Asia,” Global Biochem. Cycles 19, GB4010 (2005). https://doi.org/10.1029/2004GB002303

    Article  CAS  Google Scholar 

  57. A. W. Mackay, G. E. A. Swann, T. S. Brewer, M. J. Leng, D. W. Morley, N. Piotrowska, P. Rioaul, and D. White, “A reassessment of late glacial-Holocene diatom oxygen isotope record from Lake Baikal using a geochemical mass-balance approach,” J. Quat. Sci. 26 (6), 627–634 (2011).

    Article  Google Scholar 

  58. A. Mackay, E. Bezrukova, M. Leng, M. Meaney, A. Nunes, N. Piotrowska, A. Self, A. Shchetnikov, E. Shilland, P. Tarasov, L. Wang, and D. White, “Aquatic ecosystem responses to Holocene climate change and biome development in boreal, central Asia,” Quat. Sci. Rev. 41, 119–131 (2012). https://doi.org/10.1016/j.quascirev.2012.03.004

    Article  Google Scholar 

  59. M. H. O’Leary, “Carbon isotopes in photosynthesis,” Bioscience 38, 328–336 (1988).

    Article  Google Scholar 

  60. A. Orkhonselenge, S. Krivonogov, K. Mino, K. Kashiwaya, I. Safonova, M. Yamamoto, K. Kashima, T. Nakamura, and J. Kim, “Holocene sedimentary records from Lake Borsog, eastern shore of Lake Khuvsgul, Mongolia, and their paleoenvironmental implications,” Quat. Int. 290–291, 95–109 (2013). https://doi.org/10.1016/j.quaint.2012.03.041

    Article  Google Scholar 

  61. S. Pötter, A. Schmitz, A. Lücke, P. Schulte, I. Obreht, M. Zech, H. Wissel, S. Marković, and F. Lehmkuhl, “Middle to Late Pleistocene environments based on stable organic carbon and nitrogen isotopes of loess-palaeosol sequences from the Carpathian Basin,” Boreas 50, 184–204 (2021). https://doi.org/10.1111/bor.12470

    Article  Google Scholar 

  62. Z. G. Rao, F. H. Chen, H. Cheng, W. G. Liu, G. A. Wang, Z. P. Lai, and J. Bloemendal, “High resolution summer precipitation variations in the western Chinese Loess Plateau during the last glacial,” Sci. Rep. 3, 2785 (2013). https://doi.org/10.1038/srep02785

    Article  Google Scholar 

  63. Z. Rao, W. Guo, J. Cao, F. Shi, H. Jiang, and C. Li, “Relationship between the stable carbon isotopic composition of modern plants and surface soils and climate: a global review,” Earth-Sci. Rev. 165, 110–119 (2017). https://doi.org/10.1016/j.earscirev.2016.12.007

    Article  CAS  Google Scholar 

  64. P. J. Reimer, E. Bard, A. Bayliss, J. W. Beck, P. G. Blackwell, C. Bronk Ramsey, C. E. Buck, H. Cheng, et al., “IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP,” Radiocarbon 55 (4), 1869–1887 (2013).

    Article  CAS  Google Scholar 

  65. Yu. V. Ryzhov and V. A. Golubtsov, “Paleocryogenesis and erosional landform development in the Baikal region, Siberia, during the second half of the Late Pleistocene and the Holocene,” Archaeol. Res. Asia 26, 100277 (2021). https://doi.org/10.1016/j.ara.2021.100277

    Article  Google Scholar 

  66. R. F. Sage, “Atmospheric CO2, environmental stress and the evolution of C4 photosynthesis,” in A History of Atmospheric CO 2  and Its Effects on Plants, Animals and Ecosystems. Ecological Studies. 177 (Springer, New York, 2005), pp. 185–213. https://doi.org/10.1007/0-387-27048-5_9

  67. U. Seibt, A. Rajabi, H. Griffiths, and J. Berry, “Carbon isotopes and water use efficiency: sense and sensitivity,” Oecologia 155, 441–454 (2008). https://doi.org/10.1007/s00442-007-0932-7

    Article  Google Scholar 

  68. A. Shchetnikov, E. Bezrukova, F. Maksimov, V. Kuznetsov, and I. Filinov, “Environmental and climate reconstructions of the Fore-Baikal area during MIS 5-1: Multiproxy record from terrestrial sediments of the Ust-Oda section (Siberia, Russia),” J. Asian Earth Sci. 129, 220–230 (2016). https://doi.org/10.1016/j.jseaes.2016.08.015

    Article  Google Scholar 

  69. R. A. Stein, N. D. Sheldon, and S. Y. Smith, “Soil carbon isotope values and paleoprecipitation reconstruction,” Paleoceanogr. Paleoclimatol. 36, 2020PA004158 (2021). https://doi.org/10.1029/2020PA004158

  70. P. Tarasov, E. Bezrukova, E. Karabanov, T. Nakagawa, M. Wagner, N. Kulagina, P. Letunova, A. Abzaeva, W. Granoszewski, and F. Riedel, “Vegetation and climate dynamics during the Holocene and Eemian interglacials derived from Lake Baikal pollen records,” Palaeogeogr., Palaeoclimatol., Palaeoecol. 252, 440–457 (2007). https://doi.org/10.1016/j.palaeo.2007.05.002

    Article  Google Scholar 

  71. M. Vinnepand, P. Fischer, K. Fitzsimmons, B. Thornton, S. Fiedler, and A. Vött, “Combining inorganic and organic carbon stable isotope signatures in the Schwalbenberg loess-palaeosol-sequence near Remagen (Middle Rhine Valley, Germany),” Front. Earth Sci. 8, 276 (2020). https://doi.org/10.3389/feart.2020.00276

    Article  Google Scholar 

  72. W. Wang and Z. Feng, “Holocene moisture evolution across the Mongolian Plateau and its surrounding areas: a synthesis of climatic record,” Earth-Sci. Rev. 122, 38–57 (2013). https://doi.org/10.1016/j.earscirev.2013.03.005

    Article  Google Scholar 

  73. J. G. Wynn, “Carbon isotope fractionation during decomposition of organic matter in soils and paleosols: implications for paleoecological interpretations of paleosols,” Palaeogeogr., Palaeoclimatol., Palaeoecol. 251, 437–448 (2007). https://doi.org/10.1016/j.palaeo.2007.04.009

    Article  Google Scholar 

  74. H. Xie, H. Zhang, J. Ma, G. Li, Q. Wang, Z. Rao, W. Huang, X. Huang, and F. H. Chen, “Trend of increasing Holocene summer precipitation in arid central Asia: Evidence from an organic carbon isotopic record from the LJW10 loess section in Xinjiang, NW China,” Palaeogeogr., Palaeoclimatol., Palaeoecol. 509, 24–32 (2018). https://doi.org/10.1016/j.palaeo.2018.04.006

    Article  Google Scholar 

  75. M. Xu, G. Wang, X. Li, X. Cai, X. Li, P. Christie, and J. Zhang, “The key factor limiting plant growth in cold and humid alpine areas also plays a dominant role in plant carbon isotope discrimination,” Front. Plant Sci. 6, 961 (2015). https://doi.org/10.3389/fpls.2015.00961

    Article  Google Scholar 

  76. N. Youfeng, L. Weiguo, and A. Zhisheng, “A 130-ka reconstruction of precipitation on the Chinese Loess Plateau from organic carbon isotopes,” Palaeogeogr., Palaeoclimatol., Palaeoecol. 270, 59–63 (2008). https://doi.org/10.1016/j.palaeo.2008.08.015

    Article  Google Scholar 

  77. C. Zhang, W. Zhang, Z. -D. Feng, S. Mischke, X. Gao, D. Gao, and F. Sun, “Holocene hydrological and climatic change on the northern Mongolian Plateau based on multi-proxy records from Lake Gun Nuur,” Palaeogeogr., Palaeoclimatol. Palaeoecol. 323–325, 75–86 (2012). https://doi.org/10.1016/j.palaeo.2012.01.032

    Article  Google Scholar 

  78. Y. Zhao, F. Wu, X. Fang, and Y. Yang, “Altitudinal variations in the bulk organic carbon isotopic composition of topsoil in the Qilian Mountains area, NE Tibetan Plateau, and its environmental significance,” Quat. Int. 454, 45–55 (2017). https://doi.org/10.1016/j.quaint.2017.08.045

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to Cand. Sci. (Geogr.) E.P. Zazovskaya and S.M. Turchinskaya for the arrangement and performance of isotopic measurements.

Funding

This work was supported by the state assignment AAAA-A21-121012190055-7 (FWEM-2021-0002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Golubtsov.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by I. Bel’chenko

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

11475_2024_2133_MOESM1_ESM.docx

Table S1 . General modern landscape-climatic features of soil-sedimentary sequences

Table S2 . Radiocarbon and calibrated age of paleosols and sediments of investigated sections

Table S3 . Physicochemical properties and stable carbon isotopic composition (δ13C) of paleosols

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golubtsov, V.A., Ryzhov, Y.V. & Cherkashina, A.A. Use of δ13С Variations in Organic Matter of Paleosols of Western Transbaikalia for Reconstruction of Paleoprecipitation Dynamics in the Late Glacial and Holocene. Eurasian Soil Sc. 57, 1122–1137 (2024). https://doi.org/10.1134/S1064229324600374

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229324600374

Keywords:

Navigation