Skip to main content
Log in

Response of Nature-Based and Organic Farming Practices on Soil Chemical, Biological Properties and Crop Physiological Attributes under Soybean in Vertisols of Central India

  • AGRICULTURAL CHEMISTRY AND SOIL FERTILITY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

In recent years, many sustainable farming approachbased on natural and organicinputs are gaining popularityacross the world. However, information on its impacts on soil health is quite scanty. Therefore, in present study we evaluated the effect of nature-based farming and different nutrient management practices on soil chemical, biological and crop physiological attributes after three years of adopting various nutrient management practices includingorganic farming during the kharif season of 2021 and 2022. The treatments comprised of: T1—control, T2—nutrient supplement through indigenous natural preparation, T3—organic farming, T4—integrated crop management + natural pest control, and T5—integrated crop management with chemical pesticides (ICM-P). In terms of soil nutrients status, integrated crop management) with need-based chemical pesticides had the highest available macro and micronutrients, followed by ICM with natural-basedfarming. The organic farming practice had the lowest soil pH, EC and the highest soil organic carbon. The higher soil enzymatic and biochemical activity was found under the organic farming and natural preparation. Enzymatic indices, including the biological activity index and the geometric mean of enzyme activities were greater in organic farming and natural preparation compared to control. At higher soil depth, nutrient availability and biological activity declined. Plant total chlorophyll and nitrate reductase activity found highest under ICM-P at 60 days after sowing under the ICM-P treatment; however, it declined thereafter. Soil enzymatic activity and all available nutrients are positively correlated. Integrating nutrient sources through nature-basedand organic farming can benefit soil fertility, biological activity, and overall system sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. L. K. Abbott and D. A. Manning, “Soil health and related ecosystem services in organic agriculture,” Sustainable Agric. Res. 4, 526–536 (2015). https://doi.org/10.22004/ag.econ.230386

    Article  Google Scholar 

  2. A. T. Adetunji, F. B. Lewu, R. Mulidzi, and B. Ncube, “The biological activities of β-glucosidase, phosphatase and urease as soil quality indicators: a review,” J. Soil Sci. Plant Nutr. 17, 794–807 (2017). https://doi.org/10.4067/S0718-95162017000300018

    Article  CAS  Google Scholar 

  3. S. B. Aher, B. L. Lakaria, K. Swami, A. B. Singh, S. Ramana, J. K. Thakur, A. K. Biswas, P. Jha, M. C. Manna, and D. S. Yashona, “Soil microbial population and enzyme activities under organic, biodynamic and conventional agriculture in semi-arid tropical conditions of central India,” J. Exp. Biol. Agric. 6, 763–773 (2018). https://doi.org/10.18006/2018.6(5).763.773

    Article  CAS  Google Scholar 

  4. E. L. Balota, M. Kanashiro, A. C. Filho, D. S. Andrade, and R. P. Dick, “Soil enzyme activities under long-term tillage and crop rotation systems in subtropical agroecosystems,” Braz. J. Microbiol. 35, 300–306 (2004). https://doi.org/10.1590/S1517-83822004000300006

    Article  CAS  Google Scholar 

  5. M. Bavec and F. Bavec, “Impact of organic farming on biodiversity,” in Biodiversity in Ecosystems—Linking Structure and Function, Ed. by Y.-H. Lo, J. A. Blanco, and S. Roy (2015), Vol. 8, pp. 185–202. https://doi.org/10.5772/58974

  6. Z. P. Bharucha, S. B. Mitjans, and J. Pretty, “Towards redesign at scale through zero budget natural farming in Andhra Pradesh, India,” Int. J. Agric. Sustainability 18, 1–20 (2020). https://doi.org/10.1080/14735903.2019.1694465

    Article  Google Scholar 

  7. B. Bhatt, R. Chandra, S. Ram, and N. Pareek, “Long-term effects of fertilization and manuring on productivity and soil biological properties under rice (Oryza sativa)-wheat (Triticum asativum) sequence in Mollisols,” Arch. Agron. Soil Sci. 62 (8), 1109–1122 (2016). https://doi.org/10.1080/03650340.2015.1125471

    Article  Google Scholar 

  8. T. Bhattacharyya, P. Chandran, S. K. Ray, C. Mandal, D. K. Pal, M. V. Venugopalan, S. L. Durge, P. Srivastava, and P. N. Dubey, “Physical and chemical properties of red and black soils of selected benchmark spots for carbon sequestration studies in semi-arid tropics of India,” J. SAT Agric. Res. 5 (1), 1–239 (2007). http://oar.icrisat.org/id/eprint/2399

    Google Scholar 

  9. R. Bishnoi and A. Bhati, “An overview: zero budget natural farming,” Trends Biosci. 10, 9314–9316 (2017).

    Google Scholar 

  10. S. Biswas, R. Das, and R. Thakur, “Effect of corm and soil treatments with organic liquid formulations on performance of elephant foot yam in Jharkhand, India,” Int. J. Plant Sci. 35, 116–124 (2023). https://doi.org/10.9734/ijpss/2023/v35i52827

    Article  CAS  Google Scholar 

  11. D. N. Borase, S. Murugeasn, C. P. Nath, K. K. Hazra, S. S. Singh, N. Kumar, and C. S. Praharaj, “Long-term impact of grain legumes and nutrient management practices on soil microbial activity and biochemical properties,” Arch. Agron. Soil Sci. 67, 2015–2032 (2021). https://doi.org/10.1080/03650340.2020.1819532

    Article  CAS  Google Scholar 

  12. L. E. Casida, D. A. Klein, and R. Santaro, “Soil dehydrogenase activity,” Soil Sci. 98, 371–378 (1964).

    Article  CAS  Google Scholar 

  13. H. M. Chandrashekar, “Changing scenario of organic farming in India: an overview,” Int. NGO J. 5, 034–039 (2010).

  14. G. Chen, J. Yuan, H. Chen, X. Zhao, S. Wang, Y. Zhu, and Y. Wang, “Animal manures promoted soil phosphorus transformation via affecting soil microbial community in paddy soil,” Sci. Total Environ. 831, 154917 (2022). https://doi.org/10.1016/j.scitotenv.2022.154917

    Article  CAS  Google Scholar 

  15. R. Choudhary, R. Kumar, G. Sharma, and P. Sharma, “Effect of natural farming on yield performances, soil health and nutrient uptake in wheat + gram inter cropping system in sub-temperate regions of Himachal Pradesh,” J. Crop Weed 18, 01–08 (2022). https://doi.org/10.22271/09746315.2022.v18.i2.1566

  16. A. Chronakov, M. Kyselkova, and D. Elhottova, “Common and management-specific responses of grassland soil bacterial communities to manure and chlortetracycline amendments,” Eur. J. Soil Biol. 105, 103320 (2021) https://doi.org/10.1016/j.ejsobi.2021.103320

    Article  CAS  Google Scholar 

  17. M. Davari, S. N. Sharma, and M. Mirzakhani, “The effect of combinations of organic materials and biofertilizers on productivity, grain quality, nutrient uptake and economics in organic farming of wheat,” J. Org. Chem. 7, 26–35 (2012).

    Google Scholar 

  18. S. R. Devarinti, “Natural farming: eco-friendly and sustainable,” Agrotechnology 5, 147–164 (2016).

    Google Scholar 

  19. S. S. Dhaliwal, V. Sharma, A. K. Shukla, J. Kaur, R. K. Gupta, V. Verma, M. Kaur, V. K. Singh, and P. Singh, “Interactive effect of land use systems on depth-wise soil properties and micronutrients minerals in North-Western, India,” Heliyon 9, 2 (2023). https://doi.org/10.1016/j.heliyon.2023.e13591

    Article  CAS  Google Scholar 

  20. Y. Du, B. Cui, Q. Zhang, Z. Wang, J. Sun, and W. Niu, “Effects of manure fertilizer on crop yield and soil properties in China: a meta-analysis,” Catena 193, 104617 (2020). https://doi.org/10.1016/j.catena.2020.104617

    Article  CAS  Google Scholar 

  21. S. Duddigan, C. D. Collins, Z. Hussain, H. Osbahr, L. J. Shaw, F. Sinclair, and L. Winowiecki, “Impact of zero budget natural farming on crop yields in Andhra Pradesh, SE India,” Sustainability 14, 1689 (2022). https://doi.org/10.3390/su14031689

    Article  CAS  Google Scholar 

  22. Food and Agriculture Organization, FAO (1999). http://fao.org/organicag/oa-bag/oa-bagi/en.

  23. R. García-Ruiz, V. Ochoa, M. B. Hinojosa, and J. A. Carreira, “Suitability of enzyme activities for the monitoring of soil quality improvement in organic agricultural systems,” Soil Biol. Biochem. 40, 2137–2145 (2008). https://doi.org/10.1016/j.soilbio.2008.03.023

    Article  CAS  Google Scholar 

  24. A. Gattinger, A. Muller, M. Haeni, C. Skinner, A. Fliessbach, N. Buchmann, P. Mäder, M. Stolze, P. Smith, N. E. H. Scialabba, and U. Niggli, “Enhanced top soil carbon stocks under organic farming,” Proc. Natl. Acad. Sci. U. S. A. 109, 18226–18231 (2012). https://doi.org/10.1073/pnas.1209429109

    Article  Google Scholar 

  25. A. Ghosal and N. Sahu, “Impact of crop-specific technologies and organic growth stimulants on mustard, black gram and green gram in Sundarban area of West Bengal,” J. Indian Soc. Coastal Agric. Res. 40, 90–98 (2022). https://doi.org/10.54894/JISCAR.40.2.2022.123179

    Article  Google Scholar 

  26. A. Ghosh, R. Bhattacharya, B. K. Agarwal, P. Mahapatra, D. K. Shahi, G. Singh, R. Agnihotri, R.Sawlani, and C. Sharma, “Long term fertilization effects on 13C natural abundance, soil aggregation and deep soil organic carbon sequestration in an Alfisol,” Land Degrad. Dev. 30, 391–405 (2018b). https://doi.org/10.1002/ldr.3229

    Article  Google Scholar 

  27. A. Ghosh, R. Bhattacharya, M. C. Meena, B. S. Dwivedi, G. Singh, R. Agnihotri, and C. Sharma, “Long-term fertilization effects on soil organic carbon sequestration in an Inceptisol,” Soil Tillage Res. 177, 134–144 (2018a). https://doi.org/10.1016/j.still.2017.12.006

    Article  Google Scholar 

  28. A. Ghosh, A. B. Singh, R. V. Kumar, M. C. Manna, R. Bhattacharyya, M. M. Rahman, P. Sharma, P. S. Rajput, and S. Misra, “Soil enzymes and microbial elemental stoichiometry as bio-indicators of soil quality in diverse cropping systems and nutrient management practices of Indian Vertisols,” Appl. Soil Ecol. 145, 103304 (2020). https://doi.org/10.1016/j.apsoil.2019.06.007

    Article  Google Scholar 

  29. A. Ghosh, A. K. Singh, S. Kumar, M. C. Manna, P. Jha, R. Bhattacharyya, M. S. Sannagoudar, R. Singh, S. K. Chaudhari, and R. V. Kumar, “Do moisture conservation practices influence stability of soil organic carbon and structure?,” Catena 199, 105–127 (2021). https://doi.org/10.1016/j.catena.2020.105127

    Article  CAS  Google Scholar 

  30. K. A. Gomez and A. A. Gomez, Statistical Procedures for Agricultural Research (John Wiley& Sons, 1984).

    Google Scholar 

  31. M. Holka, J. Kowalska, and M. Jakubowska, “Reducing carbon footprint of agriculture—can organic farming help to mitigate climate change?,” Agriculture 12, 1383 (2022).

    Article  CAS  Google Scholar 

  32. Y. Huang, D. Wang, J. Cai, and W. Zheng, “Review of glomalin-related soil protein and its environmental function in the rhizosphere,” Chin. J. Plant Ecol. 35, 232–236 (2011). https://doi.org/10.3724/SP.J.1258.2011.00232

    Article  CAS  Google Scholar 

  33. IBM, Corporation, Released 2015 IBM SPSS Statistics for Windows, Version 23.0 (IBM Corp., Armonk, 2015).

    Google Scholar 

  34. M. L. Jackson, Soil Chemical Analysis Published on 2005: Advanced Course (UW-Madison Libraries Parallel Press, 1973).

    Google Scholar 

  35. A. Khadse, P. M. Rosset, H. Morales, and B. G. Ferguson, “Taking agroecology to scale: the zero-budget natural farming peasant movement in Karnataka, India,” J. Peasant Stud. 45, 192–219 (2018). https://doi.org/10.1080/03066150.2016.1276450

    Article  Google Scholar 

  36. N. B. Khitrov, D. A. Nikitin, E. A. Ivanova, and M. V. Semenov, " Variability of the content and stock of soil organic matter in time and space: an analytical review," Eurasian Soil Sci. 56 (12), 1819–1844 (2023). https://doi.org/10.1134/S106422932360207X

    Article  CAS  Google Scholar 

  37. H. V. Korat and R. K. Mathukia, “Effect of natural farming, organic farming and conventional farming on soil physical, chemical and biological properties,” Pharma Innovation Int. J. 11 (7), 924–928 (2022).

    CAS  Google Scholar 

  38. A. Kumar, H. P. Tripathi, and D. S. Yadav, “Diversification of rice-wheat cropping system for sustainable production in eastern Uttar Pradesh,” Indian J. Agron. 53, 18–21 (2008).

    Article  Google Scholar 

  39. D. Lairon, “Nutritional quality and safety of organic food. A review,” Agron. Sustainable Dev. 30, 33–41 (2010). https://doi.org/10.1051/agro/2009019

    Article  CAS  Google Scholar 

  40. J. E. Lee and A. H. Eom, “Effect of organic farming on spore diversity of arbuscular mycorrhizal fungi and glomalin in soil,” Mycobiology 37, 272–276 (2009). https://doi.org/10.4489/MYCO.2009.37.4.272

    Article  CAS  Google Scholar 

  41. J. Lemanowicz, A. Bartkowiak, R. Lamparski, P. Wojewódzki, J. Poberezny, E. Wszelaczy, and M. Szczepanek, “Physicochemical and enzymatic soil properties influenced by cropping of primary wheat under organic and conventional farming systems,” Agronomy 10, 1652 (2020). https://doi.org/10.3390/agronomy10111652

    Article  CAS  Google Scholar 

  42. C. Li, X. Li, K. Min, T. Liu, D. Li, J. Xu, Y. Zhao, H. Li, H. Chen, and F. Hu, “Copiotrophic taxa in pig manure mitigate nitrogen limitation of soil microbial communities,” Chemosphere 301, 134812 (2022).https://doi.org/10.1016/j.chemosphere.2022.134812

  43. W. L. Lindsay and W. Norvell, “Development of a DTPA soil test for zinc, iron, manganese, and copper,” Soil Sci. Soc. Am. J. 42, 421–428 (1978).

    Article  CAS  Google Scholar 

  44. A. Mandal, A. K. Patra, D. Singh, A. Swarup, and R. E. Masto, “Effect of long-term application of manure and fertilizer on biological and biochemical activities in soil during crop development stages,” Bioresour. Technol. 98, 3585–3592 (2007). https://doi.org/10.1016/j.biortech.2006.11.027

    Article  CAS  Google Scholar 

  45. A. Mandal, B. Sarkar, S. Mandal, M. Vithanage, A. K. Patra, and M. C. Manna, “Impact of agrochemicals on soil health,” in Agrochemicals Detection, Treatment and Remediation (Butterworth-Heinemann, 2020), pp. 161–187. https://doi.org/10.1016/B978-0-08-103017-2.00007-6

  46. M. C. Manna, M. M. Rahman, R. Naidu, A. F. Bari, A. B. Singh, J. K. Thakur, and A. Subbarao, “Organic farming: a prospect for food, environment and livelihood security in Indian agriculture,” Adv. Agron. 170, 101–153 (2021). https://doi.org/1016/bs.agron.2021.06.003

    Article  Google Scholar 

  47. V. A. Martinez, T. Zobeck, T. Gill, and A. Kennedy, “Enzyme activities and microbial community structure in semiarid agricultural soils,” Biol. Fertil. Soils. 38, 216–227 (2003). https://doi.org/10.1007/s00374-003-0626-1

    Article  CAS  Google Scholar 

  48. A. L. Meena, R. N. Pandey, D. Kumar, V. K. Sharma, M. D. Meena, M. Karwal, and A. Ghosh, “Impacts of long-term rice-based organic farming on fractions and forms of soil organic carbon and nitrogen in the Indo-Gangetic Plain,” Soil Res. 61 (2), 159–175 (2022). https://doi.org/10.1071/SR21048

    Article  CAS  Google Scholar 

  49. B. P. Meena, A. K. Biswas, M. Singh, R. S. Chaudhary, A. B. Singh, H. Das, and A. K. Patra, “Long-term sustaining crop productivity and soil health in maize–chickpea system through integrated nutrient management practices in Vertisols of central India,” Field Crops Res. 232, 62–76 (2019). https://doi.org/10.1016/j.fcr.2018.12.012

    Article  Google Scholar 

  50. B. Muller, Osman-Elasha, and L. Andreasen, “The potential of organic agriculture for contributing to climate change adaptation,” in Organic Agriculture for Sustainable Livelihoods (2012), pp. 117–141.

  51. P. Nannipieri, J. Ascher, M. Ceccherini, L. Landi, G. Pietramellara, and G. Renella, “Microbial diversity and soil functions,” Eur. J. Soil Sci. 54, 655–670 (2003). https://doi.org/10.1046/j.1351-0754.2003.0556.x

    Article  Google Scholar 

  52. P. Nannipieri, L. Giagnoni, L. Landi, and G. Renella, “Role of phosphatase enzymes in soil,” in Phosphorus in Action: Biological Processes in Soil Phosphorus Cycling (2011), pp. 215–243. https://doi.org/10.1007/978-3-642-15271-9_9

  53. A. S. Nehra, I. S. Hooda, and K. P. Singh, “Effect of integrated nutrient management on growth and yield of wheat (Triticum aestivum),” Indian J. Agron. 46, 112–117 (2001).

    Google Scholar 

  54. D. A. Nikitin, V. S. Sadykova, A. E. Kuvarina, A. G. Dakh, and M. V. Biryukov, “Enzymatic and antimicrobial activities in polar strains of microscopic soil fungi,” Dokl. Biol. Sci. 507, 380–393 (2022). https://doi.org/10.1134/S0012496622060151

    Article  CAS  Google Scholar 

  55. D. A. Nikitin, M. V. Semenov, and T. I. Chernov, “Microbiological indicators of soil ecological functions: a review,” Eurasian Soil Sci. 55, 221–234 (2022). https://doi.org/10.1134/S1064229322020090

    Article  CAS  Google Scholar 

  56. D. A. Nikitin, M. V. Semenov, and N. A. Ksenofontova, “Effect of fresh organic matter of straw on microbiological parameters of soddy-podzolic soil,” Eurasian Soil Sci. 56, 651–662 (2023). https://doi.org/10.1134/S1064229322601950

    Article  CAS  Google Scholar 

  57. S. R. Olsen, Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate (United States Department of Agriculture, Washington, 1954).

    Google Scholar 

  58. N. R. Panwar, P. Ramesh, A. B. Singh, and S. Ramana, “Influence of organic, chemical, and integrated management practices on soil organic carbon and soil nutrient status under semi-arid tropical conditions in central India,” Commun. Soil Sci. Plant Anal. 41, 1073–1083 (2010). https://doi.org/10.1080/00103621003687166

    Article  CAS  Google Scholar 

  59. A. Patra, V. K. Sharma, D. J. Nath, A. Dutta, T. J. Purakayastha, and K. C. Kumar, “Long-term impact of integrated nutrient management on sustainable yield index of rice and soil quality under acidic Inceptisol,” Arch. Agron. Soil Sci. 69, 1111–1128 (2023). https://doi.org/10.1080/03650340.2022.2056597

    Article  CAS  Google Scholar 

  60. J. Paz-Ferreiro, G. Gascó, B. Gutiérrez, and A. Méndez, “Soil biochemical activities and the geometric mean of enzyme activities after application of sewage sludge and sewage sludge biochar to soil,” Biol. Fertil. Soils 48, 511–517 (2012). https://doi.org/10.1007/s00374-011-0644-3

    Article  Google Scholar 

  61. A. Piotrowska-Dlugosz and P. Charzynski, “The impact of the soil sealing degree on microbial biomass, enzymatic activity, and physicochemical properties in the ekranictechnosols of toruń (Poland),” Soils Sediments 15, 47–59 (2015). https://doi.org/10.1007/s11368-014-0963-8

    Article  Google Scholar 

  62. R. S. Rajeshwari, M.Sc. Thesis (Univ. Agric. Sci., Dharwad, 2005).

  63. N. Ravisankar, M. A. Ansari, A. S. Panwar, S. K. Sharma, M. Suganthy, and D. Jaganathan, Organic Farming Research in India: Potential Technologies and Way Forward (2021). http://krishi.icar.gov.in/jspui/handle/123456789/74580

  64. S. Reddy, “Organic farming: status, issues and prospects–a review,” Agric. Econ. Res. 23, 343–358 (2010).

    Google Scholar 

  65. J. R. Reeve, L. A. Hoagland, J. J. Villalba, P. M. Carr, A. Atucha, C. Cambardella, and K. Delate, “Organic farming, soil health, and food quality: considering possible links,” Adv. Agron. 137, 319–367 (2016). https://doi.org/doi:10.1016/bs.agron.2015.12.003

    Article  Google Scholar 

  66. Reports on World Soil Resource No. 106 (FAO, Rome). https://www.fao.org/3/i3794en/I3794en.pdf.

  67. K. M. Santhosh, G. C. Reddy, and P. S. Sangwan, “A review on organic farming-sustainable agriculture development,” Int. J. Pure Appl. Biosci. 5, 1277–1282 (2017). https://doi.org/10.18782/2320-7051.5649

    Article  Google Scholar 

  68. T. Schinano, T. T. Lei, T. Kawamukai, M. T. Inoue, T. Koike, and T. Tadano, “Dimethyl sulfoxide method for the extraction of chlorophylls a and b from the leaves of wheat, field bean, dwarf bamboo, and oak,” Photosynthetica 32 (3), 409–415 (1996).

    Google Scholar 

  69. J. Schnurer and T. Rosswall, “Fluorescein diacetate hydrolysis as a measure of total microbial activity in soil and litter,” Appl. Environ. Microbiol. 43, 1256–1261 (1982). https://doi.org/10.1128/aem.43.6.1256-1261.1982

    Article  CAS  Google Scholar 

  70. M. V. Semenov, N. A. Ksenofontova, and D. A. Nikitin, “Microbiological parameters of soddy-podzolic soil and its rhizosphere in a half-century field experiment with different fertilizer systems,” Eurasian Soil Sci. 56, 756–768 (2023). https://doi.org/10.1134/S1064229323600070

    Article  CAS  Google Scholar 

  71. P. Sharma, S. Dhiman, A. Badiyal, and P. N. Sharma, “Evaluation of antagonistic potential of bio-control agents and organic inputs for the management of bean anthracnose,” Himachal J. Agric. Res. 47, 104–109 (2021).

    Google Scholar 

  72. R. Sharma and I. Thakur, “Impact of bioorganic nutrients and chemical fertilizers on sustainable production of French bean and soil health,” J. Environ. Biol. 43, 430–439 (2022). https://doi.org/10.22438/jet/43/3/MRN-1948

    Article  CAS  Google Scholar 

  73. N. Shwetha, M.Sc. Thesis (Univ. Agric. Sci., Dharwad, 2008).

  74. S. Singh, A. B. Singh, A. Mandal, J. K. Thakur, A. Das, P. S. Rajput, and G. K. Sharma, “Chemical and microbiological characterization of organic supplements and compost used in agriculture,” Emergent Life Sci. Res. 9 (2), 234–244 (2023). https://doi.org/10.31783/elsr.2023.92234244

    Article  CAS  Google Scholar 

  75. V. Subbiah and G. L. Asija, “A rapid procedure for assessment of available nitrogen in soils,” Curr. Sci. 31, 196–260 (1956).

    Google Scholar 

  76. K. M. T. Sulok, O. H. Ahmed, C. Y. Khew, and J. A. M. Zehnder, “Introducing natural farming in black pepper (Piper nigrum L.) cultivation,” Int. J. Agron. 2018, 9312537 (2018). https://doi.org/10.1155/2018/9312537

    Article  CAS  Google Scholar 

  77. M. A. Tabatabai, “Soil enzymes,” in Methods of Soil Analysis, Part 2: Microbiological and Biochemical Properties (Soil Sci. Soc. Am., Madison, 1994), pp. 775–833. https://doi.org/10.2136/sssabookser5.2.c37

  78. M. A. Tabatabai and J. M. Bremner, “Arylsulphatase activity of soil,” Soil Sci. Soc. Am. J. 34, 225–229 (1970). https://doi.org/10.2136/sssaj1970.03615995003400020016x

    Article  CAS  Google Scholar 

  79. M. A. Tabatabai and J. M. Bremner, “Assay of urease activity in soil,” Soil Biol. Biochem. 4, 479–487 (1972). https://doi.org/10.1016/0038-0717(72)90064-8

    Article  CAS  Google Scholar 

  80. M. A. Tabatabai and J. M. Bremner, “Use of p-nitrophenyl phosphate for assay of soil phosphatase activity,” Soil Biol. Biochem. 1, 301–307 (1969). https://doi.org/10.1016/0038-0717(69)90012-1

    Article  CAS  Google Scholar 

  81. A. H. C. Van Bruggen and M. R. Finckh, “Plant diseases and management approaches in organic farming systems,” Annu. Rev. Phytopathol. 54, 25–54 (2016). https://doi.org/10.1146/annurev-phyto-080615-100123

    Article  CAS  Google Scholar 

  82. V. Vidyavathi, G. S. Dasog, H. B. Babalad, N. S. Hebsur, S. K. Gali, S. G. Patil, and A. R. Alagawadi, “Nutrient status of soil under different nutrient and crop management practices,” Karnataka J. Agric. Sci. 25, (2012).

  83. A. Walkley and I. A. Black, “An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method,” Soil Sci. 37, 29–38 (1934).

    Article  CAS  Google Scholar 

  84. B. G. Wezel, R. B. Herren, E. Kerr, A. L. Barrios, R. Gonçalves, and F. Sinclair, “Agroecological principles and elements and their implications for transitioning to sustainable food systems. A review,” Agron. Sustainable Dev. 40, 40 (2020). https://doi.org/10.1007/s13593-020-00646-z

    Article  Google Scholar 

  85. S. F. Wright and A. Upadhyaya, “A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi,” Plant Soil 198, 97–107 (1998). https://doi.org/10.1023/A:1004347701584

    Article  CAS  Google Scholar 

  86. W. Xiao-Chang and L. Qin, “Beta-glucosidase activity in paddy soils of the Taihu Lake region, China,” Pedosphere 16, 118–124 (2006). https://doi.org/10.1016/S1002-0160(06)60033-7

    Article  Google Scholar 

  87. A. Yaneva, G. W. Hoffmann, and R. Tischner, “Nitrate reductase from winter wheat leaves is activated at low temperature via protein dephosphorylation,” Physiol. Plant. 114, 65–72 (2002). https://doi.org/10.1034/j.1399-3054.2002.1140110.x

    Article  CAS  Google Scholar 

  88. X. Zhang, X. Wu, S. Zhang, Y. Xing, R. Wang, and W. Liang, “Organic amendment effects on aggregate-associated organic C, microbial biomass C and glomalin in agricultural soils,” Catena 123, 188–194 (2014). https://doi.org/10.1016/j.catena.2014.08.011

    Article  CAS  Google Scholar 

  89. A. D. Zhelezova, V. M. Semenov, N. A. Ksenofontova, G. S. Krasnov, A. K. Tkhakakhova, D. A. Nikitin, and M. V. Semenov, “Effects of distinct manure amendments on microbial diversity and activity in Chernozem and Retisol,” Appl. Soil Ecol. 193, 105152 (2024). https://doi.org/10.1016/j.apsoil.2023.105152

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

I acknowledge to technical support of soil biology division for the successful conductance of the experimental trial at IISS, Bhopal. A special gratitude is accorded to Dr. Asha Sahu and Dr. Sudeshna Bhattacharjya, for sharing the facility and guidance during laboratory analysis.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Mandal.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S., Singh, A.B., Mandal, A. et al. Response of Nature-Based and Organic Farming Practices on Soil Chemical, Biological Properties and Crop Physiological Attributes under Soybean in Vertisols of Central India. Eurasian Soil Sc. (2024). https://doi.org/10.1134/S106422932460012X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S106422932460012X

Keywords:

Navigation