Skip to main content
Log in

Soils of Postagrogenic Ecosystems

  • SOIL SUCCESSIONS IN THE BOREAL FORESTS OF THE KOMI REPUBLIC
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Soils of unmanaged fallow lands differ from soils of conventionally background areas. The soils of postagrogenic (fallowed, abandoned) areas are characterized by the preservation of agrohumus horizons, the absence of forest litter, and the less pronounced podzolic horizon in comparison with soils of conventionally background areas. Agricultural development of soils and their further removal from agriculture lead to significant changes in the composition of soil organic matter. In the upper mineral horizons of postagrogenic soils, the total carbon content increases mainly due to an increase in the content of organic matter firmly bound with the mineral soil matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. A. A. Aleinikov, A. V. Tyurin, L. V. Simakin, A. S. Efimenko, and A. A. Laznikov, “The history of fires in the dark coniferous forests of the Pechoro-Ilychsky Reserve from the second half of the 19th century to the present,” Sib. Lesn. Zh., No. 6, 31–42 (2015). https://doi.org/10.15372/SJFS20150603

  2. M. V. Bobrovskii, Forest Soils of European Russia: Biotic and Anthropogenic Factors of Formation (Tovarishchestvo Nauchn. Izd. KMK, Moscow, 2010) [in Russian].

    Google Scholar 

  3. A. S. Vladychenskii, V. M. Telesnina, K. A. Rumyantseva, and T. A. Chalaya, “Organic matter and biological activity of postagrogenic soils in the southern taiga using the example of Kostroma oblast,” Eurasian Soil Sci. 46 (5), 518–529 (2013).

    Article  Google Scholar 

  4. S. V. Degteva, Extended Abstract of Doctoral Dissertation in Biology (Syktyvkar, 2002).

  5. S. V. Degteva, “Parameters of ecological space and floristic diversity of forest formations in the northeast of European Russia,” Russ. J. Ecol. 36 (3), 158–163 (2005).

    Article  Google Scholar 

  6. S. V. Degteva and Yu. A. Dubrovskii, “Dynamics of vegetation cover during restorative successions in burnt areas of dark coniferous forests of the Pechoro-Ilychsky Reserve,” Tr. Pechoro-Ilychskogo Gos. Zapov., No. 16, 35–41 (2010).

  7. A. A. Dymov, D. N. Gabov, Yu. A. Dubrovskii, E. V. Zhangurov, and N. A. Nizovtsev, “Influence of a fire in a northern taiga spruce forest on soil organic matter,” Lesovedenie, No. 1, 52–62 (2015a).

    Google Scholar 

  8. A. A. Dymov and E. Yu. Milanovskii, “Changes in the organic matter of taiga soils during the natural reafforestation after cutting in the middle taiga of the Komi Republic,” Eurasian Soil Sci. 46 (12), 1164–1171 (2013). https://doi.org/10.1134/S1064229314010049

    Article  Google Scholar 

  9. A. A. Dymov, E. Yu. Milanovskii, and V. A. Kholodov, “Composition and hydrophobic properties of organic matter in the densimetric fractions of soils from the Subpolar Urals,” Eurasian Soil Sci. 48 (11), 1212–1221 (2015). https://doi.org/10.1134/S1064229315110058

    Article  Google Scholar 

  10. A. A. Dymov and E. N. Mikhailova, “Properties of forest and postagrogenic soils developing on sandy and loamy deposits of the Komi Republic,” Izv. Komi. Nauchn. Tsentra Ural. Otd. Ross. Akad. Nauk, No. 3, 20–29 (2017).

    Google Scholar 

  11. A. A. Dymov, V. V. Startsev, and O. M. Zueva, “Carbon of water-soluble compounds in forest soils and its post-pyrogenic dynamics (on the example of the Komi Republic),” Lesovedenie, No. 5, 359–371 (2018). https://doi.org/10.1134/S00241148180400

    Article  Google Scholar 

  12. S. A. Dyrenkov, Structure and Dynamics of Taiga Spruce Forests (Nauka, Leningrad, 1984) [in Russian].

    Google Scholar 

  13. A. A. Erokhova, M. I. Makarov, E. G. Morgun, and I. M. Ryzhova, “Effect of the natural reforestation of an arable land on the organic matter composition in soddy-podzolic soils,” Eurasian Soil Sci. 47 (11), 1100–1106 (2014). https://doi.org/10.1134/S1064229314110040

    Article  Google Scholar 

  14. B. M. Kogut, E. Shchul’ts, N. A. Titova, and V. A. Kholodov, “Organic matter of granulodensimetric fractions of virgin and arable typical chernozem,” Agrokhimiya, No. 8, 3–9 (2010).

    Google Scholar 

  15. Indigenous Spruce Forests of the North: Biodiversity, Structure, Functions, Ed. by K. S. Bobkova and E. P. Galenko (Nauka, St. Petersburg, 2006) [in Russian].

    Google Scholar 

  16. P. V. Krasilnikov, “Stable carbon compounds in soils: their origin and functions,” Eurasian Soil Sci. 48 (9), 997–1008 (2015). https://doi.org/10.1134/S1064229315090069

    Article  Google Scholar 

  17. I. N. Kurganova, Extended Abstract of Doctoral Dissertation in Biology (Moscow, 2010).

  18. Forests of the Komi Republic, Ed. by G. M. Kozubov and A. I. Taskaev (Moscow, 1999) [in Russian]. Forestry and Forest Resources of the Komi Republic, Ed. by G. M. Kozubov and A. I. Taskaev (Moscow, 2000) [in Russian].

  19. D. I. Lyuri, S. V. Goryachkin, N. A. Karavaeva, E. A. Denisenko, and T. G. Nefedova, Dynamics of Agricultural Lands in Russia in the 20th Century and Post-Agrogenic Restoration of Vegetation and Soils (Moscow, 2010) [in Russian].

  20. D. I. Lyuri, D. V. Karelin, A. V. Kudikov, and S. V. Goryachkin, “Changes in soil respiration in the course of the postagrogenic succession on sandy soils in the southern taiga zone,” Eurasian Soil Sci. 46 (9), 935–947 (2013). https://doi.org/10.1134/S1064229313070041

    Article  Google Scholar 

  21. N. N. Matinyan, K. A. Bakhmatova, and S. S. Alekseev, “Postagrogenic transformation of soils formed on rocks with contrasting texture,” in Humus and Humus Formation (St. Petersburg, 2007), pp. 52–60 [in Russian].

  22. E. N. Nakvasina and L. V. Golubeva, “Transformation of post-agrogenic soils on carbonate deposits in the Arkhangelsk region,” Vestn. Sev. (Atkt.) Fed. Univ. Ser.: Estestv. Nauki, No. 1, 32–40 (2014).

    Google Scholar 

  23. M. A. Orlova, N. V. Lukina, V. E. Smirnov, and N. A. Artemkina, “The influence of spruce on acidity and nutrient content in soils of northern taiga dwarf shrub–green moss spruce forests,” Eurasian Soil Sci. 49 (11), 1276–1287 (2016). https://doi.org/10.1134/S1064229316110077

    Article  Google Scholar 

  24. V. V. Ponomareva, Theory of the Podzol Formation Process (Biochemical Aspects) (Nauka, Moscow–Leningrad, 1964) [in Russian].

  25. S. G. Prokushkin, V. V. Bogdanov, A. S. Prokushkin, and I. V. Tokareva, “Post-fire restoration of organic substance in the ground cover of the larch forests in permafrost zone of Central Evenkia,” Biol. Bull. (Moscow) 38 (2), 183–190 (2011). https://doi.org/10.1134/S1062359011020129

    Article  Google Scholar 

  26. E. A. Robakidze, N. V. Torlopova, and K. S. Bobkova, “Chemical composition of wet precipitation in old-growth middle-taiga spruce stands,” Geochem. Int. 51 (1), 65–75 (2013). https://doi.org/10.1134/S0016702912110092

    Article  Google Scholar 

  27. V. M. Semenov and B. M. Kogut, Soil Organic Matter (GEOS, Moscow, 2015) [in Russian].

    Google Scholar 

  28. V. M. Telesnina, “Postagrogenic dynamics of vegetation and soil properties during demutational succession in the southern taiga,” Lesovedenie, No. 4, 293–306 (2015).

    Google Scholar 

  29. A. Abulizi, Y. Yang, Z. Mamat, J. Luo, D. Abdulslam, Z. Xu, A. Zayiti, A. Ahat, and W. Halik, “Land-use change and its effects in Charchan Oasis, Xinjiang, China,” Land Degrad. Dev. 28, 106–115 (2017). https://doi.org/10.1002/ldr.2530

    Article  Google Scholar 

  30. A. J. Belsky, “Effects of grazing, competition, disturbance and fire on species composition and diversity in grassland communities,” J. Veg. Sci. 3, 187–200 (1992).

    Article  Google Scholar 

  31. A. Dahlström, H. Rydin, and S-O. Borgegård, “Remnant habitats for grassland species in an abandoned Swedish agricultural landscape,” Appl. Veg. Sci. 13, 305–314 (2010). https://doi.org/10.1111/j.1654-109X.2009.01068.x

    Article  Google Scholar 

  32. M. Debolini, J. M. Schoorl, A. Temme, M. Galli, and E. Bonari, “Changes in agricultural land use affecting future soil redistribution patterns: a case study in southern Tuscany (Italy),” Land Degrad. Dev. 26, 574–586 (2015). https://doi.org/10.1002/ldr.2217

    Article  Google Scholar 

  33. C. Dupré and M. Diekmann, “Differences in species richness and life-history traits between grazed and abandoned grasslands in southern Sweden,” Ecography 24, 275–286 (2001). https://doi.org/10.1111/j.1600-0587.2001.tb00200.x

    Article  Google Scholar 

  34. A. A. Dymov, Y. A. Dubrovskiy, and V. V. Startsev, “Postagrogenic development of Retisols in the middle taiga subzone of European Russia (Komi Republic),” Land Degrad. Dev. 29 (3), 495–505 (2018). https://doi.org/10.1002/ldr.2881

    Article  Google Scholar 

  35. A. A. Dymov and D. N. Gabov, “Pyrogenic alterations of Podzols at the North-East European part of Russia: morphology, carbon pools, PAH content,” Geoderma 241–242, 230–237 (2015). https://doi.org/10.1016/j.geoderma.2014.11.021

    Article  Google Scholar 

  36. J. R. England, K. I. Paul, S. C. Cunningham, D. B. Madhavan, T. G. Baker, Z. Read, B. R. Wilson, T. R. Cavagnaro, T. Lewis, M. P. Perring, T. Herrmann, and P. J. Polglase, “Previous land use and climate influence differences in soil organic carbon following reforestation of agricultural land with mixed-species plantings,” Agric., Ecosyst. Environ. 227, 61–72 (2016). https://doi.org/10.1016/j.agee.2016.04.026

    Article  Google Scholar 

  37. J. P. Grime, Plant Strategies and Vegetation Processes (Wiley and Sons, 1979).

    Google Scholar 

  38. L. B. Guo and R. M. Gifford, “Soil carbon stock and land use change: a meta analysis,” Global Change Biol. 8, 345–360 (2002). https://doi.org/10.1046/j.1354-1013.2002.00486.x

    Article  Google Scholar 

  39. Soil Atlas of the Northern Circumpolar Region, Ed. by A. Jones, V. Stolbovoy, C. Tarnocai, G. Broll, O. Spaargaren, and L. Montanarella (European Commission, Publications Office of the European Union, Luxembourg, 2010).

  40. O. Kalinina, O. Chertov, M. Nadporozhskay, and L. Giani, “Properties of soil organic matter of plaggic anthrosols from Nortwest Germany, Northwest and North Russia,” Arch. Agron. Soil Sci. 55 (5), 477–492 (2009).

    Article  Google Scholar 

  41. O. Kalinina, L. Giani, S. V. Goryachkin, and D. I. Lyuri, “Post-agrogenic development of vegetation, soils, and carbon stocks under self-restoration in different climatic zones of European Russia,” Catena 129, 18–29 (2015). https://doi.org/10.1016/j.catena.2015.02.016

  42. I. Kurganova, V. Lopes de Gerenyu, and Y. Kuzyakov, “Large-scale carbon sequestration in postagrogenic ecosystems in Russia and Kazakhstan,” Catena 133, 461–466 (2015). https://doi.org/10.1016/j.catena.2015.06.002

    Article  Google Scholar 

  43. I. Kurganova, V. Lopes de Gerenyu, Y. Kuzyakov, and J. Six, “Carbon cost of collective farming collapse in Russia,” Global Change Biol. 20, 938–947 (2014). https://doi.org/10.1111/gcb.12379

    Article  Google Scholar 

  44. R. Lal, “Forest soils and carbon sequestration,” For. Ecol. Manage., No. 220, 242–258 (2005). https://doi.org/10.1016/j.foreco.2005.08.015

  45. A. B. Novakovskiy, S. P. Maslova, I. V. Dalke, and Y. A. Dubrovskiy, “Patterns of allocation CSR plant functional types in Northern Europe,” Int. J. Ecol., (2016). https://doi.org/10.1155/2016/1323614

  46. M. Ohlson, B. Dahlberg, T. Økland, K. J. Brown, and R. Halvorsen, “The charcoal carbon pool in boreal forest soils,” Nat. Geosci. 2, 692–695 (2009). https://doi.org/10.1038/ngeo617

    Article  Google Scholar 

  47. Y. Pan, R. Birdsey, J. Fang, R. Houghton, P. E. Kauppi, W. A. Kurz, O. L. Phillips, A. Shvidenko, S. L. Lewis, J. G. Canadell, P. Ciais, R. B. Jackson, S. W. Pacala, A. D. McGuire, S. Piao, A. Rautiainen, S. Sitch, and D. Hayes, “A large and persistent carbon sink in the world’s forests,” Science 19, 988–993 (2011). https://doi.org/10.1126/science.1201609

    Article  Google Scholar 

  48. S. Pierce, G. Brusa, and I. Vagge, “Allocating CSR plant functional types: the use of leaf economics and size traits to classify woody and herbaceous vascular plants,” Funct. Ecol. 27, 1002–1010 (2013). https://doi.org/10.1111/1365-2435.12095

    Article  Google Scholar 

  49. C. Poeplau and A. Don, “Carbon sequestration in agricultural soils via cultivation of cover crops – a meta-analysis,” Agric., Ecosyst. Environ. 200, 33–41 (2015). https://doi.org/10.1016/j.agee.2014.10.024

    Article  Google Scholar 

  50. C. Poeplau and A. Don, “Sensitivity of soil organic stocks and fraction to different land use changes across Europe,” Geoderma 192, 189–201 (2013). https://doi.org/10.1016/j.geoderma.2012.08.003

  51. C. Santín and S. H. Doerr, “Fire effects on soils: the human dimension,” Philos. Trans. R. Soc., B 371 (1696), (2016). https://doi.org/10.1098/rstb.2015.0171

  52. R. S. Smith and S. P. Rushton, “The effects of grazing management on the vegetation of mesotrophic (meadow) grassland in northern England,” J. Appl. Ecol. 31, 13–24 (1994).

    Article  Google Scholar 

  53. C. Tarnocai, J. G. Canadell, E. A. G. Schuur, P. Kuhry, G. Mazhitova, and S. Zimov, “Soil organic carbon pools in the northern circumpolar permafrost region,” Global Biogeochem. Cycles 23, GB2023 (2009). https://doi.org/10.1029/2008GB003327

    Article  Google Scholar 

  54. L. Vesterdal, I. K. Scmidt, I. Callesen, L. O. Nilsson, and P. Gundersen, “Carbon and nitrogen in forest floor and mineral soil under six common European tree species,” For. Ecol. Manage. 255, 35–48 (2008). https://doi.org/10.1016/j.foreco.2007.08.015

    Article  Google Scholar 

  55. M. Wiesmeier, C. Poeplau, C. A. Sierra, H. Maier, C. Frühau, R. Hübner, A. Kühnel, P. Spörlein, U. Geu, E. Hangen, B. Schilling, M. von Lützow, and I. Kögel-Knabner, “Projected loss of soil organic carbon in temperate agricultural soils in the 21st century: effects of climate change and carbon input trends,” Sci. Rep. 6, 1–17 (2016). https://doi.org/10.1038/srep32525

    Article  Google Scholar 

  56. M. Wiesmeier, P. Sporlein, U. Geu, E. Hansen, S. Haug, A. Reischl, B. Schilling, M. von Lützow, and I. Kögel-Knabner, “Soil organic carbon stocks in southeast Germany (Bavaria) as affected by land use, soil type and sampling depth,” Global Change Biol., (2012). https://doi.org/10.1111/j.1365-2486.2012.02699.x

  57. M. Winsa, R. Bommarco, R. Lindborg, L. Marini, and E. Öckinger, “Recovery of plant diversity in restored semi-natural pastures depends on adjacent land use,” Appl. Veg. Sci. 18, 413–422 (2015). https://doi.org/10.1111/avsc.12157

    Article  Google Scholar 

  58. B. Yu, P. Stott, X. Y. Di, and H. X. Yu, “Assessment of land cover changes and their effect on soil organic carbon and soil total nitrogen in Daqing prefecture, China,” Land Degrad. Dev. 25, 520–531 (2014). https://doi.org/10.1002/ldr.2169

    Article  Google Scholar 

  59. Y.-G. Zhao, X.-F. Liu, Z.-L. Wang, and S.-W. Zhao, “Soil organic carbon fractions and sequestration across a 150-yr secondary forest chronosequence on the Loess Plateau, China,” Catena 133, 303–308 (2015). https://doi.org/10.1016/j.catena.2015.05.028

    Article  Google Scholar 

Download references

Funding

The work was carried out within the framework of state assignment “Cryogenesis as a Factor of Soil Formation and Evolution in the Arctic and Boreal Ecosystems in the European Northeast under Conditions of Current Anthropogenic Impacts and Global and Regional Climatic Trends” (no. 122040600023-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Dymov.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by V. Klyueva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dymov, A.A. Soils of Postagrogenic Ecosystems. Eurasian Soil Sc. 56 (Suppl 1), S114–S130 (2023). https://doi.org/10.1134/S1064229323700229

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229323700229

Keywords:

Navigation