Skip to main content
Log in

Influence of Combustion Temperature and Composition of Organic Soil Horizons on the PAH Content (Laboratory Experiment)

  • DEGRADATION, REHABILITATION, AND CONSERVATION OF SOILS
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The change in the content and composition of polycyclic aromatic hydrocarbons (PAHs) was studied in organic horizons of soils of the boreal zone subjected to combustion under oxygen deficiency conditions. Organic soil horizons from the oligotrophic bog and two types of forest ecosystems (lichen pine and green moss spruce forest) were analyzed. It was found that combustion conditions, the composition of burned organic material, and its flammability influence significantly the content and composition of PAHs. Polyarenes are formed, for the most part, at 300°C. As compared to original samples, their content increases from 2.7 to 9.7 times. The maximum content of PAHs in the samples is reached at 300°C, whereas it falls by 5.8–33.0 times at 500°C. An abrupt decrease in the PAHs content is probably due to the decomposition to simpler substances. The experimentally obtained ratio of low-molecular weight to high-molecular weight polyarenes, which exceeds one, may indicate the pyrogenic origin of PAHs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. V. A. Beznosikov, E. D. Lodygin, D. N. Gabov, and R. S. Vasilevich, “Humic substances and polycyclic aromatic hydrocarbons in tundra soils,” Teor. Prikl. Ekol., No. 1, 44–52 (2015).

  2. D. N. Gabov, V. A. Beznosikov, B. M. Kondratenok, and E. V. Yakovleva, “Formation of polycyclic aromatic hydrocarbons in northern and middle taiga soils,” Eurasian Soil Sci. 41 (11), 1180–1188 (2008). https://doi.org/10.1134/S1064229308110069

    Article  Google Scholar 

  3. A. N. Gennadiev, Yu. I. Pikovskii, A. S. Tsibart, and M. A. Smirnova, “Hydrocarbons in soils: origin, composition, and behavior (review),” Eurasian Soil Sci. 48 (10), 1076–1089 (2015). https://doi.org/10.1134/S1064229315100026

    Article  CAS  Google Scholar 

  4. A. N. Gennadiev and A. S. Tsibart, “Pyrogenic polycyclic aromatic hydrocarbons in soils of reserved and anthropogenically modified areas: factors and features of accumulation,” Eurasian Soil Sci. 46 (1), 28–36 (2013). https://doi.org/10.1134/S106422931301002X

    Article  CAS  Google Scholar 

  5. E. A. Golovatskaya and L. G. Nikonova, “Decomposition of plant residues in peat soils of oligotrophic bogs,” Vestn. Tomsk. Gos. Univ. Biol., No. 2(23), 137–151 (2013). https://doi.org/10.17223/19988591/23/13

  6. A. A. Dymov, Yu. A. Dubrovsky, and D. N. Gabov, “Pyrogenic changes in iron-illuvial podzols in the middle taiga of the Komi Republic,” Eurasian Soil Sci. 47 (2), 47–56 (2014). https://doi.org/10.1134/S1064229314020045

    Article  Google Scholar 

  7. A. A. Dymov, E. Yu. Milanovskii, and V. A. Kholodov, “Composition and hydrophobic properties of organic matter in the densimetric fractions of soils from the Subpolar Urals,” Eurasian Soil Sci. 48 (11), 1212–1221 (2015). https://doi.org/10.1134/S1064229315110058

    Article  CAS  Google Scholar 

  8. L. I. Inisheva, “Peat soils: genesis and classification,” Eurasian Soil Sci. 39 (7), 699–704 (2006). https://doi.org/10.1134/S1064229306070027

    Article  Google Scholar 

  9. K. Sh. Kazeev, M. Yu. Odabashian, A. V. Trushkov, and S. I. Kolesnikov, “Assessment of the influence of pyrogenic factors on the biological properties of chernozems,” Eurasian Soil Sci. 53 (11), 1610–1619 (2020). https://doi.org/10.1134/S106422932011006X

    Article  CAS  Google Scholar 

  10. E. Yu. Konstantinova, S. N. Sushkova, T. M. Minkina, E. M. Antonenko, A. O. Konstantinov, and V. Yu. Khoroshavin, “Polycyclic aromatic hydrocarbons in soils of industrial and residential areas of Tyumen,” Izv. Tomsk. Politekh. Univ. Inzhiniring Georesur. 329 (8), 66–79 (2018).

    Google Scholar 

  11. D. S. Kosyakov, N. V. Ul’yanovskii, D. M. Mazur, and A. T. Lebedev, “Mass spectrometry in the study of Arctic air pollution,” Lab. Proizvod., Nos. 3–4, 56–68 (2020).

    Google Scholar 

  12. O. V. Masyagina, I. V. Tokareva, and A. S. Prokushkin, “Modeling of the thermal influence of fires on the physicochemical properties and microbial activity of litter in cryogenic soils,” Eurasian Soil Sci. 47 (8), 809–818 (2014). https://doi.org/10.1134/S1064229314080092

    Article  Google Scholar 

  13. A. S. Prokushkin and I. V. Tokareva, “The influence of heating on organic matter of forest litters and soils under experimental conditions,” Eurasian Soil Sci. 40 (6), 628–635 (2007). https://doi.org/10.1134/S106422930706004X

    Article  Google Scholar 

  14. S. G. Prokushkin, V. V. Bogdanov, A. S. Prokushkin, and I. V. Tokareva, “Post-fire restoration of organic substance in the ground cover of the larch forests in permafrost zone of Central Evenkia,” Biol. Bull. (Moscow) 38 (2), 183–190 (2011).

    Article  CAS  Google Scholar 

  15. SanPiN 1.2.3685–21, Hygienic Standards and Requirements for Ensuring the Safety and/or Harmlessness of Environmental Factors to Humans (2021). https://docs.cntd.ru/document/573500115#6540IN. Cited September 4, 2023.

  16. S. N. Sushkova, E. V. Yakovleva, T. M. Minkina, D. N. Gabov, E. M. Antonenko, T. S. Dudnikova, A. I. Barbashev, T. V. Minnikova, S. I. Kolesnikov, and V. D. Radzhput, “Accumulation of benzo(a)pyrene in plants of different species and the organic horizon of soils of steppe phytocenoses under technogenic pollution,” Izv. Tomsk. Politekh. Univ. Inzhiniring Georesur. 331 (12), 200–214 (2020). https://doi.org/10.18799/24131830/2020/12/2953

    Article  Google Scholar 

  17. A. I. Taskaev, Atlas of the Komi Republic on Climate and Hydrology (Drofa, Moscow, 1997) [in Russian].

    Google Scholar 

  18. A. P. Khaustov and M. M. Redina, “Indicator ratios of concentrations of polycyclic aromatic hydrocarbons in coal and biomass combustion facilities,” Antropog. Transform. Prir. Sredy, No. 5, 64–71 (2019).

    Google Scholar 

  19. A. S. Tsibart and A. N. Gennadiev, “Polycyclic aromatic hydrocarbons in soils: Sources, behavior, and indication significance (a review),” Eurasian Soil Sci. 46 (7), 728–741 (2013). https://doi.org/10.1134/S1064229313070090

    Article  CAS  Google Scholar 

  20. E. V. Yakovleva, V. A. Beznosikov, B. M. Kondratenok, D. N. Gabov, and M. I. Vasilevich, “Bioaccumulation of polycyclic aromatic hydrocarbons in the soil-plant system,” Agrokhimiya, No. 9, 66–74 (2008).

    Google Scholar 

  21. E. V. Yakovleva, D. N. Gabov, R. S. Vasilevich, and N. N. Goncharova, “Participation of plants in the formation of polycyclic aromatic hydrocarbons in peatlands,” Eurasian Soil Sci. 53 (3), 317–329 (2020). https://doi.org/10.1134/S1064229320030102

    Article  CAS  Google Scholar 

  22. E. V. Yakovleva, D. N. Gabov, and R. S. Vasilevich, “Formation of the composition of polycyclic aromatic hydrocarbons in hummocky bogs in the forest-tundra–northern tundra zonal sequence,” Eurasian Soil Sci. 55 (3), 313–329 (2022). https://doi.org/10.1134/S1064229322030140

    Article  CAS  Google Scholar 

  23. S. N. Araya, M. L. Fogel, and A. A. Berhe, “Thermal alteration of soil organic matter properties: a systematic study to infer response of Sierra Nevada climosequence soils to forest fires,” Soil 3, 31–44 (2017). https://doi.org/10.5194/soil-3-31-2017

    Article  CAS  Google Scholar 

  24. I. Atanassova and G. W. Brümmer, “Polycyclic aromatic hydrocarbons of anthropogenic and biopedogenic origin in a colluviated hydromorphic soil of Western Europe,” Geoderma 120 (1), 27–34 (2004). https://doi.org/10.1016/j.geoderma.2003.08.007

    Article  CAS  Google Scholar 

  25. C. Biache, L. Mansuy-Huault, and P. Faure, “Impact of oxidation and biodegradation on the most commonly used polycyclic aromatic hydrocarbon (PAH) diagnostic ratios: implications for the source identifications,” J. Hazard. Mater. 267, 31–39 (2014). https://doi.org/10.1016/j.jhazmat.2013.12.036

    Article  CAS  Google Scholar 

  26. G. Broll, H. J. Brauckmann, M. Overesch, B. Junge, C. Erber, G. Milbert, D. Baize, and F. Nachtergaele, “Topsoil characterization: recommendations for revision and expansion of the FAO-draft (1998) with emphasis on humus forms and biological factors,” J. Plant Nutr. Soil Sci. 169 (3), 453–461 (2006). https://doi.org/10.1002/jpln.200521961

    Article  CAS  Google Scholar 

  27. I. Campos, N. Abrantes, P. Pereira, A. C. Micaelo, C. Vale, and J. J. Keizer, “Forest fires as potential triggers for production and mobilization of polycyclic aromatic hydrocarbons to the terrestrial ecosystem,” Land Degrad. Dev. 30 (18), 2360–2370 (2019). https://doi.org/10.1002/ldr.3427

    Article  Google Scholar 

  28. G. Certini, “Effects of fire on properties of forest soils: a review,” Oecologia 143, 1–10 (2005). https://doi.org/10.1007/s00442-004-1788-8

    Article  Google Scholar 

  29. G. Certini, “Fire as a soil-forming factor,” Ambio 43 (2), 191–195 (2014). https://doi.org/10.1007/s13280-013-0418-2

    Article  Google Scholar 

  30. H. Chen, A. T. Chow, X. W. Li, H. G. Ni, R. A. Dahlgren, H. Zeng, and J. J. Wang, “Wildfire burn intensity affects the quantity and speciation of polycyclic aromatic hydrocarbons in soils,” ACS Earth Space Chem. 2 (12), 1262–1270 (2018). https://doi.org/10.1021/acsearthspacechem.8b00101

    Article  CAS  Google Scholar 

  31. Y. Chen, F. S. Hu, and M. J. Lara, “Divergent shrub-cover responses driven by climate, wildfire, and permafrost interactions in Arctic tundra ecosystems,” Global Change Biol. 27 (3), 652–663 (2021). https://doi.org/10.1111/gcb.15451

    Article  Google Scholar 

  32. L. F. DeBano, “The role of fire and soil heating on water repellency in wildland environments: a review,” J. Hydrol. 231, 195–206 (2000). https://doi.org/10.1016/S0022-1694(00)00194-3

    Article  Google Scholar 

  33. P. Devi and A. K. Saroha, “Effect of pyrolysis temperature on polycyclic aromatic hydrocarbons toxicity and sorption behaviour of biochars prepared by pyrolysis of paper mill effluent treatment plant sludge,” Bioresour. Technol. 192, 312–320 (2015). https://doi.org/10.1016/j.biortech.2015.05.084

    Article  CAS  Google Scholar 

  34. A. A. Dymov, E. V. Abakumov, I. N. Bezkorovaynaya, A. S. Prokushkin, Y. V. Kuzyakov, and E. Y. Milanovsky, “Impact of forest fire on soil properties (review),” Theor. Appl. Ecol., No. 4, 13–23 (2018). https://doi.org/10.25750/1995-4301-2018-4-013-023

  35. A. A. Dymov and D. N. Gabov, “Pyrogenic alterations of Podzols at the North-east European part of Russia: morphology, carbon pools, PAH content,” Geoderma 241, 230–237 (2015).

    Article  Google Scholar 

  36. A. A. Dymov, I. D. Grodnitskaya, E. V. Yakovleva, Y. A. Dubrovskiy, I. N. Kutyavin, V. V. Startsev, and A. S. Prokushkin, “Albic podzols of boreal pine forests of Russia: soil organic matter, physicochemical and microbiological properties across pyrogenic history,” Forests 13 (11), 1831 (2022). https://doi.org/10.3390/f13111831

    Article  Google Scholar 

  37. A. A. Dymov, V. V. Startsev, E. V. Yakovleva, Y. A. Dubrovskiy, E. Y. Milanovsky, D. A. Severgina, and A. S. Prokushkin, “Fire-induced alterations of soil properties in albic podzols developed under pine forests (middle taiga, Krasnoyarsky kray),” Fire 6 (2), 67 (2023). https://doi.org/10.3390/fire6020067

    Article  Google Scholar 

  38. W. H. Frandsen, “Ignition probability of organic soils,” Can. J. For. Res. 27, 1471–1477 (1997). https://doi.org/10.1139/x97-106

    Article  Google Scholar 

  39. S. Froehner, D. B. de Souza, K. S. Machado, F. Falcao, C. S. Fernandes, T. Bleninger, and D. M. Neto, “Impact of coal tar pavement on polycyclic hydrocarbon distribution in lacustrine sediments from non-traditional sources,” Int. J. Environ. Sci. Technol. 9, 327–332 (2012). https://doi.org/10.1007/s13762-012-0044-8

    Article  CAS  Google Scholar 

  40. D. Gabov, E. Yakovleva, and R. Vasilevich, “Vertical distribution of PAHs during the evolution of permafrost peatlands of the European arctic zone,” Appl. Geochem. 123, 104790 (2020). https://doi.org/10.1016/j.apgeochem.2020.104790

    Article  CAS  Google Scholar 

  41. G. Giovannini, S. Lucchesi, and M. Giachetti, “Effect of heating on some physical and chemical parameters related to soil aggregation and erodibility,” Soil Sci. 146 (4), 255–261 (1988). https://doi.org/10.1097/00010694-198810000-00006

    Article  CAS  Google Scholar 

  42. G. Gleixner, C. J. Czimczik, C. Kramer, B. Luhker, and M. W. Schmidt, “Plant compounds and their turnover and stabilization as soil organic matter,” Global Biogeochem. Cycles Clim. Syst., 201–215 (2001). https://doi.org/10.1016/B978-012631260-7/50017-0

  43. J. G. Goldammer and V. V. Furyaev, “Fire in ecosystems of boreal Eurasia: ecological impacts and links to the global system,” in Fire in Ecosystems of Boreal Eurasia (Springer Netherlands, Dordrecht, 1996), pp. 1–20. https://doi.org/10.1007/978-94-015-8737-2_1

  44. N. M. Gorbach, V. V. Startsev, A. S. Mazur, E. Y. Milanovskiy, A. S. Prokushkin, and A. A. Dymov, “Simulation of smoldering combustion of organic horizons at pine and spruce boreal forests with lab-heating experiments,” Sustainability 14 (24), 16772 (2022). https://doi.org/10.3390/su142416772

    Article  CAS  Google Scholar 

  45. S. E. Hale, J. Lehmann, D. Rutherford, A. R. Zimmerman, R. T. Bachmann, V. Shitumbanuma, A. O' Toole, K. L. Sundqvist, H. P. H. Arp, and G. Cornelissen, “Quantifying the total and bioavailable polycyclic aromatic hydrocarbons and dioxins in biochars,” Environ. Sci. Technol. 46 (5), 2830–2838 (2012). https://doi.org/10.1021/es203984k

    Article  CAS  Google Scholar 

  46. A. R. Harper, C. Santin, S. H. Doerr, C. A. Froyd, D. Albini, X. L. Otero, and B. Perez-Fernandez, “Chemical composition of wildfire ash produced in contrasting ecosystems and its toxicity to Daphnia magna,” Int. J. Wildland Fire 28 (10), 726–737 (2019). https://doi.org/10.1071/WF18200

    Article  CAS  Google Scholar 

  47. T. Iglesias, V. Cala, and J. Gonzalez, “Mineralogical and chemical modifications in soils affected by a forest fire in the Mediterranean area,” Sci. Total Environ. 204 (1), 89–96 (1997). https://doi.org/10.1016/S0048-9697(97)00173-3

    Article  CAS  Google Scholar 

  48. A. V. Ivanov, M. Neumann, G. F. Darman, A. V. Danilov, E. S. Susloparova, I. D. Solovyov, and S. Bryanin, “Vulnerability of larch forests to forest fires along a latitudinal gradient in eastern Siberia,” Can. J. For. Res. 52 (12), 1543–1552 (2022). https://doi.org/10.1139/cjfr-2022-0161

    Article  Google Scholar 

  49. B. M. Jenkins, A. D. Jones, S. Q. Turn, and R. B. Williams, “Particle concentrations, gas-particle partitioning, and species intercorrelations for polycyclic aromatic hydrocarbons (PAH) emitted during biomass burning,” Atmos. Environ. 30 (22), 3825–3835 (1996). https://doi.org/10.1016/1352-2310(96)00084-2

    Article  CAS  Google Scholar 

  50. M. Jian, A. A. Berhe, M. Berli, and T. A. Ghezzehei, “Vulnerability of physically protected soil organic carbon to loss under low severity fires,” Front. Environ. Sci. 6, 66 (2018). https://doi.org/10.3389/fenvs.2018.00066

    Article  Google Scholar 

  51. E. J. Kim, S. D. Choi, and Y. S. Chang, “Levels and patterns of polycyclic aromatic hydrocarbons (PAHs) in soils after forest fires in South Korea,” Environ. Sci. Pollut. Res. 18, 1508–1517 (2011). https://doi.org/10.1007/s11356-011-0515-3

    Article  CAS  Google Scholar 

  52. H. Knicker, “Pyrogenic organic matter in soil: Its origin and occurrence, its chemistry and survival in soil environments,” Quat. Int. 243 (2), 251–263 (2011). https://doi.org/10.1016/j.quaint.2011.02.037

    Article  Google Scholar 

  53. D. S. Kosyakov, N. V. Ul’yanovskii, T. B. Latkin, S. A. Pokryshkin, V. R. Berzhonskis, O. V. Polyakova, and A. T. Lebedev, “Peat burning – an important source of pyridines in the earth atmosphere,” Environ. Pollut. 266, 115109 (2020). https://doi.org/10.1016/j.envpol.2020.115109

    Article  CAS  Google Scholar 

  54. D. R. Lide, CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, 2004), Vol. 85, p. 2712.

    Google Scholar 

  55. E. Lodygin, E. Abakumov, and T. Nizamutdinov, “The content of polyarenes in soils of antarctica: Variability across landscapes,” Land 10 (11), 1162 (2021). https://doi.org/10.3390/land10111162

    Article  Google Scholar 

  56. T. E. McGrath, W. G. Chan, and M. R. Hajaligol, “Low temperature mechanism for the formation of polycyclic aromatic hydrocarbons from the pyrolysis of cellulose,” J. Anal. Appl. Pyrolysis 66 (1–2), 51–70 (2003). https://doi.org/10.1016/S0165-2370(02)00105-5

    Article  CAS  Google Scholar 

  57. A. Mizwar and Y. Trihadiningrum, “PAH contamination in soils adjacent to a coal-transporting facility in Tapin District, South Kalimantan, Indonesia,” Arch. Environ. Contam. Toxicol. 69, 62–68 (2015). https://doi.org/10.1007/s00244-015-0141-z

    Article  CAS  Google Scholar 

  58. S. Negri, S. Stanchi, L. Celi, and E. Bonifacio, “Simulating wildfires with lab-heating experiments: Drivers and mechanisms of water repellency in alpine soils,” Geoderma 402, 115357 (2021). https://doi.org/10.1016/j.geoderma.2021.115357

    Article  CAS  Google Scholar 

  59. V. M. Ngole-Jeme, “Fire-induced changes in soil and implications on soil sorption capacity and remediation methods,” Appl. Sci. 9 (17), 3447 (2019). https://doi.org/10.3390/app9173447

    Article  CAS  Google Scholar 

  60. M. C. Peel, B. L. Finlayson, and T. A. McMahon, “Updated world map of the Köppen-Geiger climate classification,” Hydrol. Earth Syst. Sci. 11 (5), 1633–1644 (2007). http://https://doi.org/10.5194/hess-11-1633-2007

  61. C. Peng, Z. Ouyang, M. Wang, W. Chen, X. Li, and J. C. Crittenden, “Assessing the combined risks of PAHs and metals in urban soils by urbanization indicators,” Environ. Pollut. 178, 426–432 (2013). https://doi.org/10.1016/j.envpol.2013.03.058

    Article  CAS  Google Scholar 

  62. A. M. Potapov, X. Sun, A. D. Barnes, M. J. Briones, G. G. Brown, E. K. Cameron, C. -H. Chang, J. Cortet, N. Eisenhauer, A. L. Franco, S. Fujii, S. Geisen, C. Guerra, K. Gongalsky, J. Haimi, I. T. Handa, C. Janion-Sheepers, K. Karaban, Z. Lindo, and D. Wall, “Global monitoring of soil animal communities using a common methodology,” Soil Org. 94 (1), 55–68 (2022). https://doi.org/10.25674/so94iss1id178

    Article  Google Scholar 

  63. Y. Qu, Y. Gong, J. Ma, H. Wei, Q. Liu, L. Liu, and Y. Chen, “Potential sources, influencing factors, and health risks of polycyclic aromatic hydrocarbons (PAHs) in the surface soil of urban parks in Beijing, China,” Environ. Pollut. 260, 114016 (2020). https://doi.org/10.1016/j.envpol.2020.114016

    Article  CAS  Google Scholar 

  64. C. Santín, H. Knicker, S. Fernández, R. Menéndez-Duarte, and M. Á. Álvarez, “Wildfires influence on soil organic matter in an Atlantic mountainous region (NW of Spain),” Catena 74 (3), 286–295 (2008). https://doi.org/10.1016/j.catena.2008.01.001

    Article  Google Scholar 

  65. C. Santín and S. H. Doerr, “Fire effects on soils: the human dimension,” Philos. Trans. R. Soc., B 371, 20150171 (2016). https://doi.org/10.1098/rstb.2015.0171

  66. V. V. Startsev, E. V. Yakovleva, I. N. Kutyavin, and A. A. Dymov, “Fire impact on carbon pools and basic properties of retisols in native spruce forests of the European North and Central Siberia of Russia,” Forests 13 (7), 1135 (2022). https://doi.org/10.3390/f13071135

    Article  Google Scholar 

  67. L. Tang, X. Tang, Y. G. Zhu, M. H. Zheng, and Q. L. Miao, “Contamination of polycyclic aromatic hydrocarbons (PAHs) in urban soils in Beijing, China,” Environ. Int. 31, 822–828 (2005). https://doi.org/10.1016/j.envint.2005.05.031

    Article  CAS  Google Scholar 

  68. M. Tobiszewski and J. Namieњnik, “PAH diagnostic ratios for the identification of pollution emission sources,” Environ. Pollut. 162, 110–119 (2012). https://doi.org/10.1016/j.envpol.2011.10.025

    Article  CAS  Google Scholar 

  69. A. S. Tsibart, A. N. Gennadiev, and T. S. Koshovskii, “Polycyclic aromatic hydrocarbons in post-fire soils of drained peatlands in western Meshchera (Moscow region, Russia),” Solid Earth 5 (2), 1305–1317 (2014). https://doi.org/10.5194/se-5-1305-2014

    Article  Google Scholar 

  70. M. R. Turetsky, B. Benscoter, S. Page, G. Rein, G. R. Van Der Werf, and A. Watts, “Global vulnerability of peatlands to fire and carbon loss,” Nat. Geosci. 8 (1), 11–14 (2015). https://doi.org/10.1038/NGEO2325

    Article  CAS  Google Scholar 

  71. A. D. Uhler and S. D. Emsbo-Mattingly, “Environmental stability of PAH source indices in pyrogenic tars,” Bull. Environ. Contam. Toxicol. 76, 689–696 (2006). https://doi.org/10.1007/s00128-006-0975-1

    Article  CAS  Google Scholar 

  72. T. Wei and V. R. Simko, Package “Corrplot”: Visualization of a Correlation Matrix (Version 0.92). Package Corrplot for R Software (2021).

    Google Scholar 

  73. H. Wickham and J. Bryan, Readxl: Read Excel Files R Package Version 1.3.1. R Package (Vienna, 2019), p. 10.

    Google Scholar 

  74. E. V. Yakovleva and D. N. Gabov, “Polyarenes accumulation in tundra ecosystem influenced by coal industry of Vorkuta,” Pol. Polar Res. 41 (3), 237–267 (2020). https://doi.org/10.24425/ppr.2020.134122

    Article  Google Scholar 

  75. B. Yang, Y. Shi, S. Xu, Y. Wang, S. Kong, Z. Cai, and J. Wang, “Polycyclic aromatic hydrocarbon occurrence in forest soils in response to fires: a summary across sites,” Environ. Sci.: Processes Impacts 24 (1), 32–41 (2022). https://doi.org/10.1039/D1EM00377A

    Article  CAS  Google Scholar 

  76. A. M. Young, P. E. Higuera, P. A. Duffy, and F. S. Hu, “Climatic thresholds shape northern high-latitude fire regimes and imply vulnerability to future climate change,” Ecography 40, 606–617 (2016). https://doi.org/10.1111/ecog.02205

    Article  Google Scholar 

  77. M. B. Yunker, R. W. Macdonald, R. Vingarzan, R. H. Mitchell, D. Goyette, and S. Sylvestre, “PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition,” Org. Geochem. 33 (4), 489–515 (2002). https://doi.org/10.1016/S0146-6380(02)00002-5

    Article  CAS  Google Scholar 

  78. W. Zhang, S. Zhang, C. Wan, D. Yue, Y. Ye, and X. Wang, “Source diagnostics of polycyclic aromatic hydrocarbons in urban road runoff, dust, rain and canopy throughfall,” Environ. Pollut. 153 (3), 594–601 (2008). https://doi.org/10.1016/j.envpol.2007.09.004

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by budgetary themes “Cryogenesis as a Factor in the Formation and Evolution of Soils in the Arctic and Boreal ecosystems of the European Northeast under Modern Anthropogenic Impacts and Global and Regional Climate Trends”, project no. 122040600023-8.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Gorbach.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

Additional information

Translated by O. Eremina

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorbach, N.M., Yakovleva, E.V. & Dymov, A.A. Influence of Combustion Temperature and Composition of Organic Soil Horizons on the PAH Content (Laboratory Experiment). Eurasian Soil Sc. 57, 853–864 (2024). https://doi.org/10.1134/S1064229323603669

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229323603669

Keywords:

Navigation