Skip to main content
Log in

Assessment of Ecotoxicity of Silver Particles Different in Size according to Biological Indicators in Haplic Chernozem

  • DEGRADATION, REHABILITATION, AND CONSERVATION OF SOILS
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The ecotoxicity of Ag particles of different size has been assessed by microbiological, biochemical, and phytotoxic indicators for the upper layer (0–20 cm) of ordinary chernozem (Haplic Chernozem) in a laboratory model experiment. The effect has been studied of nano- (10 and 100 nm) and microparticles (1000 nm) of Ag at concentrations of 1, 10, and 100 mg/kg on the biological parameters of ordinary chernozem 30 days after contamination: the activity of catalase, dehydrogenases, ferrireductase, urease, peroxidase, polyphenol oxidase, invertase, phosphatase, the total number of bacteria, the abundance of bacteria of Azotobacter genus, the number of germinated seeds and the length of radish roots. It was found that the ecotoxicity of Ag particles depended on their size: in most cases, Ag particles 10 nm in size had a stronger ecotoxic effect on the biological parameters than particles 100 and 1000 nm in size. There were no significant differences in the ecotoxicity of 100 and 1000 nm Ag particles. The difference in the effects of Ag particles of different sizes increased with increasing Ag concentration in the soil: the higher the Ag concentration was in the soil (from 1 to 100 mg/kg), the more pronounced the difference was in ecotoxicity between 10 nm Ag particles and 100 and 1000 nm Ag particles. Phytotoxic indicators were more sensitive to contamination by Ag nanoparticles at all concentrations studied (1, 10 and 100 mg/kg); the total number of bacteria, invertase and phosphatase activity at 10 and 100 mg/kg; the abundance of bacteria of Azotobacter genus and the activity of dehydrogenases at 100 mg/kg. It is advisable to use these indicators in biodiagnostics of the ecotoxicity of Ag nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. I. P. Bab’eva and G. M. Zenova, Soil Biology (Mosk. Univ., Moscow, 1983) [in Russian].

    Google Scholar 

  2. A. Sh. Galstyan, “Enzymatic soil diagnostics. Problems and methods of biological diagnostics and indication of soils,” in Proceedings of the All-Union Meeting (Moscow, 1976), pp. 22–24.

  3. A. V. Dikarev, V. G. Dikarev, and N. S. Dikareva, “Study of lead phytotoxicity for radish and lettuce plants when grown on different types of soil,” Agrokhimiya, No. 6, 72–80 (2019). https://doi.org/10.1134/S0002188119030050

    Article  Google Scholar 

  4. T. G. Dobrovol’skaya, D. G. Zvyagintsev, I. Yu. Chernov, A. V. Golovchenko, G. M. Zenova, L. V. Lysak, N. A. Manucharova, O. E. Marfenina, L. M. Polyanskaya, A. L. Stepanov, and M. M. Umarov, “The role of microorganisms in the ecological functions of soils,” Eurasian Soil Sci. 48 (9), 959–967 (2015). https://doi.org/10.1134/S1064229315090033

    Article  Google Scholar 

  5. D. G. Zvyagintsev, I. P. Bab’eva, and G. M. Zenova, Soil Biology (Mosk. Univ., Moscow, 2005) [in Russian].

    Google Scholar 

  6. K. Sh. Kazeev, S. I. Kolesnikov, Yu. V. Akimenko, and E. V. Dadenko, Methods for Biodiagnostics of Terrestrial Ecosystems (Izd. Yuzhn. Fed. Univ., Rostov-on-Don, 2016) [in Russian].

    Google Scholar 

  7. L. A. Karyagina and N. A. Mikhailova, “Determination of polyphenoloxidase and peroxidase activity,” Vestn. Akad. Nauk BSSR. Ser. Sel’skogaspad. Nauk, No. 2, 40–41 (1986).

    Google Scholar 

  8. S. I. Kolesnikov, K. Sh. Kazeev, and V. F. Val’kov, Ecological Consequences of Soil Pollution with Heavy Metals (Izd. Sev.-Kavk. Nauchn. Tsentra Vyssh. Shk., Rostov-on-Don, 2000) [in Russian].

    Google Scholar 

  9. S. I. Kolesnikov, K. Sh. Kazeev, M. L. Tatosyan, and V. F. Val’kov, “The effect of pollution with oil and oil products on the biological status of ordinary chernozems,” Eurasian Soil Sci. 39 (5), 552–556 (2006). https://doi.org/10.1134/S1064229306050127

    Article  Google Scholar 

  10. S. I. Kolesnikov, A. N. Timoshenko, K. Sh. Kazeev, Yu. V. Akimenko, and M. A. Myasnikova, “Ecotoxicity of copper, nickel, and zinc nanoparticles assessment on the basis of biological indicators of chernozems,” Eurasian Soil Sci. 52 (8), 982–987 (2019). https://doi.org/10.1134/S106422931908009X

    Article  CAS  Google Scholar 

  11. N. A. Kulikova, “Silver nanoparticles in soil: input, transformation, and toxicity,” Eurasian Soil Sci. 54 (3), 352–365 (2021). https://doi.org/10.1134/S1064229321030091

    Article  CAS  Google Scholar 

  12. Methods of Soil Microbiology and Biochemistry (Mosk. Univ., Moscow, 1980) [in Russian].

  13. F. Kh. Khaziev, Methods of Soil Enzymology (Nauka, Moscow, 2005) [in Russian].

    Google Scholar 

  14. R. Aznar, F. Barahona, O. Geiss, J. Ponti, T. J. Luis, and J. Barrero-Moreno, “Quantification and size characterisation of silver nanoparticles in environmental aqueous samples and consumer products by single particle-ICPMS,” Talanta 175, 200–208 (2017). https://doi.org/10.1016/j.talanta.2017.07.048

    Article  CAS  Google Scholar 

  15. S. Balandeh, A. Lakzian, and A. Javadmanesh, “Effects of silver nanoparticles on soil microbial activity and bacterial populations in a calcareous soil using qPCR,” J. Water Soil 35 (6), 859–843 (2022). https://doi.org/10.22067/JSW.2021.67908.1004

    Article  Google Scholar 

  16. A. Bhattacharyya, P. Duraisamy, M. Govindarajan, A. A. Buhroo, and R. Prasad, “Nano-biofungicides: emerging trend in insect pest control,” in Advances and Applications through Fungal Nanobiotechnology (2016), pp. 307–319. https://doi.org/10.1007/978-3-319-42990-8_15

  17. S. Chernousova and M. Epple, “Silver as antibacterial agent: ion, nanoparticle, and metal,” Angew. Chem., Int. Ed. 52, 1636–1653 (2013). https://doi.org/10.1002/anie.201205923

    Article  CAS  Google Scholar 

  18. O. Choi and Z. Hu, “Size-dependent and reactive oxygen species nanoselective toxicity to nitrifying bacteria,” Environ. Sci. Technol. 42, 4583–4588 (2008). https://doi.org/10.1021/es703238h

    Article  CAS  Google Scholar 

  19. P. Courtois, A. Vaufleury, A. Grosser, C. Lors, and F. Vandenbulcke, “Transfer of sulfidized silver from silver nanoparticles, in sewage sludge, to plants and primary consumers in agricultural soil environment,” Sci. Total Environ. 777, 145900 (2021). https://doi.org/10.1016/j.scitotenv.2021.145900

    Article  CAS  Google Scholar 

  20. P. Cvjetko, A. Milošić, A-M. Domijan, I. Vinković Vrček, S. Tolić, P. Peharec Štefanić, I. Letofsky-Papst, M. Tkalec, and B. Balen, “Toxicity of silver ions and differently coated silver nanoparticles in Allium cepa roots,” Ecotoxicol. Environ. Saf. 137, 8–28 (2017). https://doi.org/10.1016/j.ecoenv.2016.11.009

    Article  CAS  Google Scholar 

  21. F. Eivazi, Z. Afrasiabi, and E. Jose, “Effects of silver nanoparticles on the activities of soil enzymes involved in carbon and nutrient cycling,” Pedosphere 28, 209–214 (2018).

    Article  CAS  Google Scholar 

  22. F. Eivazi and M. A. Tabatabai, “Phosphatases in soils,” Soil Biol. Biochem. 9 (3), 167–172 (1977).

    Article  CAS  Google Scholar 

  23. W. F. Falco, M. D. Scherer, S. L. Oliveir, H. Wender, I. Colbeck, T. Lawson, A. R. L. Caires, “Phytotoxicity of silver nanoparticles on Vicia faba: evaluation of particle size effects on photosynthetic performance and leaf gas exchange,” Sci. Total Environ. 701, 134816 (2020). https://doi.org/10.1016/j.scitotenv.2019.134816

    Article  CAS  Google Scholar 

  24. C. Forstner, T. G. Orton, P. Wang, P. M. Kopittke, and P. G. Dennis, “Soil chloride content influences the response of bacterial but not fungal diversity to silver nanoparticles entering soil via wastewater treatment processing,” Environ. Pollut. 255, 113274 (2019). https://doi.org/10.1016/j.envpol.2019.113274

    Article  CAS  Google Scholar 

  25. A. R. Gliga, S. Skoglund, I. Odnevall, B. Fadeel, and H. Karlsson, “Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release,” Part. Fibre Toxicol. 11, 11 (2014). https://doi.org/10.1186/1743-8977-11-1

    Article  CAS  Google Scholar 

  26. A. Grün, S. Straskraba, S. Schulz, M. Schloter, and C. Emmerling, “Long-term effects of environmentally relevant concentrations of silver nanoparticles on microbial biomass, enzyme activity, and functional genes involved in the nitrogen cycle of loamysoil,” J. Environ. Sci. 69, 12–22 (2018). https://doi.org/10.1016/j.jes.2018.04.013

    Article  CAS  Google Scholar 

  27. Y. N. Huang, T. T. Qian, F. Dang, Y. G. Yin, M. Li, and D. M. Zhou, “Significant contribution of metastable particulate organic matter to natural formation of silver nanoparticles in soils” Nat. Commun. 10, 4–11 (2019). https://doi.org/10.1038/s41467-019-11643-6

    Article  CAS  Google Scholar 

  28. A. Ivask, I. Kurvet, K. Kasemets, I. Blinova, V. Aruoja, S. Suppi, H. Vija, A. Kakinen, T. Titma, M. Heinlaan, M. Visnapuu, D. Koller, V. Kisand, and A. Kahru, “Size-dependent toxicity of silver nanoparticles to bacteria, yeast, algae, crustaceans and mammalian cells in vitro,” PLoS One 9 (7), e102108 (2014). https://doi.org/10.1371/journal.pone.01021080

    Article  Google Scholar 

  29. X. Jin, M. Li, J. Wang, C. Marambio-Jones, F. Peng, X. Huang, R. Damoiseaux, and E. M. V. Hoek, “High-throughput screening of silver nanoparticle stability and bacterial inactivation in aquatic media: influence of specific ions,” Environ. Sci. Technol. 44, 7321–7328 (2010). https://doi.org/10.1021/es100854g

    Article  CAS  Google Scholar 

  30. S. I. Kolesnikov, N. I. Tsepina, T. V. Minnikova, K. Sh. Kazeev, S. S. Mandzhieva, S. N. Sushkova, T. M. Minkina, M. Mazarji, R. K. Singh, and V. D. Rajput, “Influence of silver nanoparticles on the biological indicators of haplic chernozem,” Plants 10, 1022 (2021). https://doi.org/10.3390/plants10051022

    Article  CAS  Google Scholar 

  31. S. I. Kolesnikov, N. I. Tsepina, L. V. Sudina, T. V. Minnikova, K. Sh. Kazeev, and Yu. V. Akimenko, “Silver ecotoxicity estimation by the soils state biological indicators,” Appl. Environ. Soil Sci. 2020, 1207210 (2020). https://doi.org/10.1155/2020/1207210

    Article  CAS  Google Scholar 

  32. S. I. Kolesnikov, M. V. Yaroslavtsev, N. A. Spivakova, and K. Sh. Kazeev, “Comparative assessment of the biological tolerance of chernozems in the south of Russia towards contamination with Cr, Cu, Ni, and Pb in a model experiment,” Eurasian Soil Sci. 46, 176–181 (2013).

    Article  CAS  Google Scholar 

  33. M. Kuamri, V. Ernest, A. Mukherjee, and N. Chandrasekaran, “In vivo nanotoxicity assays in plant models,” Nanotoxicity 926, 399–410 (2012). https://doi.org/10.1007/978-1-62703-002-1_26

    Article  CAS  Google Scholar 

  34. N. A. Kulikova, D. S. Volkov, A. B. Volikov, D. P. Abroskin, A. I. Krepak, and I. V. Perminova, “Silver nanoparticles stabilized by humic substances adversely affect wheat plants and soil,” J. Nanopart. Res. 22, 100 (2020). https://doi.org/10.1007/s11051-020-04788-9

    Article  CAS  Google Scholar 

  35. T. Künniger, A. C. Gerecke, A. Ulrich, A. Huch, R. Vonbank, M. Heeb, A. Wichser, R. Haag, P. Kunz, and M. Faller, “Release and environmental impact of silver nanoparticles and conventional organic biocides from coated woodenfaçades,” Environ. Pollut. 184, 464–471 (2014). https://doi.org/10.1016/j.envpol.2013.09.030

    Article  CAS  Google Scholar 

  36. L. B. Lahuta, J. Szablinska-Piernik, K. Stalanowska, K. Głowacka, M. Horbowicz, “The size-dependent effects of silver nanoparticles on germination, early seedling development and polar metabolite profile of wheat (Triticum aestivum L.),” Int. J. Mol. Sci. 23, 13255 (2022). https://doi.org/10.3390/ijms232113255

    Article  CAS  Google Scholar 

  37. S. Makama, J. Piella, A. Undas, W. J. Dimmers, R. Peters, V. F. Puntes, and N. W. Brink, “Properties of silver nanoparticles influencing their uptake in and toxicity to the earthworm Lumbricus rubellus following exposure in soil,” Environ. Pollut. 218, 870–878 (2016). https://doi.org/10.1016/j.envpol.2016.08.016

    Article  CAS  Google Scholar 

  38. C. Michels, S. Perazzoli, and M. Soares, “Inhibition of the enriched culture of ammonium-oxidizing bacteria by two different nanoparticles: silver and magnetite,” Common Environ. Sci. 586, 995–1002 (2017). https://doi.org/10.1016/j.scitotenv.2017.02.080

    Article  CAS  Google Scholar 

  39. P. Mishra, Y. Xue, F. Eivazi, and Z. Afrasiabi, “Size, concentration, coating, and exposure time effects of silver nanoparticles on the activities of selected soil enzymes,” Geoderma 381, 114682 (2021). https://doi.org/10.1016/j.geoderma.2020.114682

    Article  CAS  Google Scholar 

  40. G. Montes de Oca-Vásquez, F. Solano-Campos, J. R. Vega-Baudrit, R. López-Mondéjar, A. Vera, J. L. Morenof, and F. Bastidaf, “Organic amendments exacerbate the effects of silver nanoparticles on microbial biomass and community composition of a semiarid soil,” Sci. Total Environ. 744, 140919 (2020). https://doi.org/10.1016/j.jhazmat.2020.122224

    Article  CAS  Google Scholar 

  41. J. R. Morones, J. L. Elechiguerra, A. Camacho, K. Holt, J. B. Kouri, J. T. Ramirez, and M. J. Yacaman, “The bactericidal effect of silver nanoparticles,” Nanotechnology 16, 2346–2353 (2005). https://doi.org/10.1088/0957-4484/16/10/059

    Article  CAS  Google Scholar 

  42. N. Musee, M. Thwala, and N. Nota, “The antibacterial effects of engineered nanomaterials: implications for wastewater treatment plants,” J. Environ. Monit. 13, 1164–1183 (2011). https://doi.org/10.1039/c1em10023h

    Article  CAS  Google Scholar 

  43. C. A. Ottoni, NetoM. C. Lima, P. Leo, B. D. Ortolan, E. Barbieri, and A. O. De Souza, “Environmental impact of biogenic silver nanoparticles in soil and aquatic organisms,” Chemosphere 239, 124698 (2020). https://doi.org/10.1016/j.chemosphere.2019.124698

    Article  CAS  Google Scholar 

  44. C. Peyrot, K. J. Wilkinson, M. Desrosiers, and S. Sauvé, “Effects of silver nanoparticles on soil enzyme activities with and without added organic matter,” Environ. Toxicol. Chem. 33, 115–125 (2014). .https://doi.org/10.1002/etc.2398

    Article  CAS  Google Scholar 

  45. J. Pulit-Prociak and M. Banach, “Silver nanoparticles–a material of the future…?,” Open Chem. 14, 76–91 (2016). https://doi.org/10.1515/chem-2016-0005

    Article  CAS  Google Scholar 

  46. S. Rahmatpour, M. Shirvani, M. R. Mosaddeghi, N. Farshid, and M. Bazarganipour, “Dose–response effects of silver nanoparticles and silver nitrate on microbial and enzyme activities in calcareous soils,” Geoderma 285, 313–322 (2017). https://doi.org/10.1016/j.geoderma.2016.10.006

    Article  CAS  Google Scholar 

  47. A. D. Samarajeewa, J. R. Velicogna, J. I. Princz, R. M. Subasinghe, R. P. Scroggins, and L. A. Beaudette, “Effect of silver nano-particles on soil microbial growth, activity and community diversity in a sandy loam soil,” Environ. Pollut. 220, 504–513 (2017). https://doi.org/10.1016/j.envpol.2016.09.094

    Article  CAS  Google Scholar 

  48. W. A. Shoults-Wilson, B. B. Reinsh, O. V. Tsyusko, P. M. Bertsh, G. V. Lowry, and J. M. Unrin, “Role of particle size and soil type in the toxicity of silver nanoparticles to worms,” Soil Sci. Soc. Am. J. 75, 365–377 (2011). https://doi.org/10.2136/sssaj2010.0127nps

    Article  CAS  Google Scholar 

  49. R. G. Sibbald, J. Contreras-Ruiz, P. Coutts, M. Fierheller, A. Rothman, and K. Woo, “Bacteriology, inflammation, and healing: a study of nanocrystalline silver dressings in chronic venous leg ulcers,” Adv. Skin Wound Care 20, 549–558 (2007). https://doi.org/10.1097/01.ASW.0000294757.05049.85

    Article  Google Scholar 

  50. U. Song, H. Jun, B. Waldman, J. Roh, Y. Kim, J. Yi, and E. J. Lee, “Functional analyses of nanoparticle toxicity: a comparative study of the effects of TiO2 and Ag on tomatoes (Lycopersicon esculentum),” Ecotoxicol. Environ. Saf. 93, 60–67 (2013). https://doi.org/10.1016/j.ecoenv.2013.03.033

    Article  CAS  Google Scholar 

  51. M. A. Tabatabai and J. M. Bremner, “Use of p-nitrophenol phosphate in assay of soil phosphatase activity,” Soil Biol. Biochem. 1, 301–307 (1969).

    Article  CAS  Google Scholar 

  52. P. Thuesombat, S. Hannongbua, S. Akasit, and S. Chadchawan, “Effect of silver nanoparticles on rice (Oryza sativa L. cv. KDML 105) seed germination and seedling growth,” Ecotoxicol. Environ. Saf. 104, 302–309 (2014). https://doi.org/10.1016/j.ecoenv.2014.03.022

    Article  CAS  Google Scholar 

  53. World Reference Base for Soil Resources 2014. Update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps (FAO, Rome, 2015).

  54. C. Yan, J. Huang, C. Cao, R. Li, Y. Ma, and Y. Wang, “Effects of PVP-coated silver nanoparticles on enzyme activity, bacterial and archaeal community structure and function in a yellow-brown loam soil,” Environ. Sci. Pollut. Res. 27, 8058–8070 (2020). https://doi.org/10.1007/s11356-019-07347-5

    Article  CAS  Google Scholar 

  55. H. Yu, X. Xu, X. Chen, T. Lu, and P. Zhang, “Preparation and antibacterial effects of PVA-PVP hydrogels containing silver nanoparticles,” J. Appl. Polym. Sci. 103, 125–133 (2007). https://doi.org/10.1002/app.24835

    Article  CAS  Google Scholar 

  56. L. Zhang, L. Wu, Y. Si, and K. Shu, “Size-dependent cytotoxicity of silver nanoparticles to Azotobacter vinelandii: growth inhibition, cell injury, oxidative stress and internalization,” PLoS One 13 (12), e0209020 (2018). https://doi.org/10.1371/journal.pone.0209020

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Russian Science Foundation, project no. 22-74-00054 in Southern Federal University (https://rscf.ru/project/22-74-00054/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Minnikova.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by T. Chicheva

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsepina, N.I., Kolesnikov, S.I., Minnikova, T.V. et al. Assessment of Ecotoxicity of Silver Particles Different in Size according to Biological Indicators in Haplic Chernozem. Eurasian Soil Sc. 57, 865–874 (2024). https://doi.org/10.1134/S1064229323603645

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229323603645

Keywords:

Navigation