Skip to main content
Log in

Spatial Distribution and Variation Characteristics of Saturated Hydrologic Conductivity on the Chinese Loess Plateau

  • SOIL PHYSICS
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The Chinese Loess Plateau (CLP) plays a vital role as an ecological barrier in maintaining the hydrological and climatic conditions of the Yellow River Basin, preventing desertification, and preserving biodiversity. Conducting a systematic analysis and assessment of the saturated hydrological conductivity (Ksat) on the Loess Plateau is crucial for modeling and simulating processes like surface runoff and solute migration. However, due to the uncertainty in detecting the saturated hydraulic conductivity, there are very few regional spatial analyses of the saturated hydraulic conductivity of the CLP. The research results show that the Campbell model is more suitable for the CLP than others. Spatially, Ksat gradually decreases from northwest to southeast. The Ksat in the surface layer (0 cm) was significantly larger than that at the lower soil depths, and the Ksat variability of each soil layer was moderate. Moran;s I decreased as the lag distance increased; this indicated a positive spatial correlation between Ksat and the correlation gradually decreasing with distance. The scattered points are mainly located in the first quadrant, so the local spatial auto-correlation characteristics of the Ksat in this area are clustered with high values. The Ksat for different land cover on the CLP increases in the order grassland > forest land > agricultural land and increases with elevation. This study improves our understanding of land resources and ecological environment management in the CLP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. I. Bayramin, M. Basaran, G. Erpul, M. Dolarslan, and M. R. Canga, “Comparison of soil organic carbon content, hydraulic conductivity, and particle size fractions between a grassland and a nearby black pine plantation of 40 years in two surface depths,” Environ. Geol. 56, 1563–1575 (2009). https://doi.org/10.1007/s00254-008-1254-8

    Article  CAS  Google Scholar 

  2. F. Buccigrossi, A. Caliandro, P. Rubino, and M. A. Mastro, “Testing some pedo-transfer functions (PTFs) in Apulia region,” J. Agric. Eng. 40 (1), 19–31 (2009). https://doi.org/10.4081/jae.2009.1.19

    Article  Google Scholar 

  3. G. S. Campbell, Soil Physics with BASIC: Transport Models for Soil-Plant Systems (Elsevier, 1985).

    Google Scholar 

  4. T. Fu, H. Chen, W. Zhang, Y. Nie, P. Gao, and K. Wang, “Spatial variability of surface soil saturated hydraulic conductivity in a small karst catchment of southwest China,” Environ. Earth Sci. 74 (3), 2381–2391 (2015).

    Article  CAS  Google Scholar 

  5. Z. H. Fu, Y. Q. Wang, and Z. S. An, “Spatio-temporal characteristics of soil bulk density and saturated hydraulic conductivity at small watershed scale on Loes,” Trans. Chin. Soc. Agric. Eng. 31 (13), 128–134 (2015).

    Google Scholar 

  6. J. X. Fu, F. L. Zheng, and Y. Y. Li, “Analysis of land use spatial autocorrelation patterns and influence factors of Xiaolihe Watershed,” Trans. Chin. Soc. Agric. Mach. 48 (1), 128–138 (2017).

    Google Scholar 

  7. K. S. Gootman, E. Kellner, and J. A. Hubbart, “A comparison and validation of saturated hydraulic conductivity models,” Water 12 (7), 2040 (2020). https://doi.org/10.3390/w12072040

    Article  Google Scholar 

  8. N. Gorelick, M. Hancher, M. Dixon, S. Ilyushchenko, D. Thau, and R. Moore, “Google Earth Engine: planetary-scale geospatial analysis for everyone,” Remote Sens. Environ. 202, 18–27 (2017). https://doi.org/10.1016/j.rse.2017.06.031

    Article  Google Scholar 

  9. W. Hu, M. Shao, Q. Wang, J. Fan, and R. Horton, “Temporal changes of soil hydraulic properties under different land uses,” Geoderma 149 (3–4), 355–366 (2009). https://doi.org/10.1016/j.geoderma.2008.12.016

    Article  Google Scholar 

  10. J. D. Jabro, “Estimation of saturated hydraulic conductivity of soils from particle size distribution and bulk density data,” Transactions of the ASAE., 35(2), 557–560 (1992).

    Article  Google Scholar 

  11. Y. Jiang, L. Rao, K. Sun, Y. Han, and X. Guo, “Spatio-temporal distribution of soil nitrogen in Poyang Lake ecological economic zone (South-China),” Sci. Total Environ. 626, 235–243 (2018). https://doi.org/10.1016/j.scitotenv.2018.01.087

    Article  CAS  Google Scholar 

  12. Y. Li, D. Chen, R. E. White, A. Zhu, and J. Zhang, “Estimating soil hydraulic properties of Fengqiu County soils in the North China Plain using pedo-transfer functions,” Geoderma 138 (3–4), 261–271 (2007). https://doi.org/10.1016/j.geoderma.2006.11.018

    Article  Google Scholar 

  13. P. Li, D. M. Wang, and C. Ding, “Distributions characteristics of soil saturated hydraulic conductivity and soil bulk density in a small watershed in the alpine zone of the Loess Plateau,” Sci. Soil Water Conserv. 17 (4), 10–17 (2019).

    Google Scholar 

  14. T. Li, X. Li, X. Hao, and S. Kang, “Predicting spatial distribution of soil saturated hydraulic conductivity by soil texture on vineyard in arid region,” Trans. Chin. Soc. Agric. Eng. 30 (9), 84–92 (2014).

    CAS  Google Scholar 

  15. C. L. Liu, W. Hu, and H. F. Jia, “Spatial heterogeneity of soil saturated hydraulic conductivity on a slope of the wind-water erosion crisscross region on the Loess Plateau,” Acta Ecol. Sin. 32 (4), 1211–1219 (2012).

    Article  Google Scholar 

  16. F. L. Ma, S. h. Fu, and G. H. Luo, “Properties of soil water retention and hydraulic conductivity in the waterlogged land over slope cropland in typical black soil region of Northeast China,” Res. Soil Water Conserv. 24 (6), 222–226 (2017).

    Google Scholar 

  17. R. Ma, H. Liu, and W. Wu, “Effect of topographic attributes on soil texture class variations at a watershed scale: a case study of a basin in Pengshui County of Chongqing, China,” J. Agric. Resour. Environ. 36 (3), 279–286 (2019).

    Google Scholar 

  18. O. Mutanga and L. Kumar, “Google Earth engine applications,” Remote Sens. 11 (5), 591 (2019). https://doi.org/10.3390/rs11050591

    Article  Google Scholar 

  19. Y. Pachepsky and Y. Park, “Saturated hydraulic conductivity of US soils grouped according to textural class and bulk density,” Soil Sci. Soc. Am. J. 79 (4), 1094–1100 (2015).

    Article  CAS  Google Scholar 

  20. S. Popolizio, E. Barca, M. Castellini, F. F. Montesano, and A. M. Stellacci, “Investigating the spatial structure of soil hydraulic properties in a long-term field experiment using the BEST methodology,” Agronomy 12 (11), 2873 (2022). https://doi.org/10.3390/agronomy12112873

    Article  Google Scholar 

  21. W. E. Puckett, J. H. Dane, and B. F. Hajek, “Physical and mineralogical data to determine soil hydraulic properties,” Soil Sci. Soc. Am. J. 49 (4), 831–836 (1985).

    Article  Google Scholar 

  22. X. Z. Ruan, J. H. Cheng, and H. J. Zhang, “Saturated hydraulic conductivity of different land use types in Simian Mountain of Chongqing City,” Bull. Soil Water Conserv. 35 (1), 79–84 (2015).

    Google Scholar 

  23. P. Santra, U. K. Chopra, and D. Chakraborty, “Spatial variability of soil properties and its application in predicting surface map of hydraulic parameters in an agricultural farm,” Curr. Sci. 95 (7), 937–945 (2008). https://www.jstor.org/stable/24103193

    CAS  Google Scholar 

  24. K. E. Saxton, W. Rawls, J. S. Romberger, and R. I. Papendick, “Estimating generalized soil-water characteristics from texture,” Soil Sci. Soc. Am. J. 50 (4), 1031–1036 (1986). https://doi.org/10.2136/sssaj1986.03615995005000040039x

    Article  Google Scholar 

  25. R. Shao, Y. Li, and B. Q. Zhang, “Analysis of the spatial and temporal analysis and prediction of water use efficiency since the Grain for Green Projectin the Loess Plateau,” Sci. Technol. Rev. 38, 81–91 (2020).

    Google Scholar 

  26. Z. Shen, R. L. Zhang, H. Y. Long, and A. Xu, “Research on spatial distribution of soil texture in Southern Ningxia based on machine learning,” Sci. Agric. Sin. 55 (15), 2961–2972 (2022).

    Google Scholar 

  27. K. R. J. Smettem and K. L. Bristow, “Obtaining soil hydraulic properties for water balance and leaching models from survey data. Hydraulic conductivity,” Aust. J. Agric. Res. 50 (7), 1259–1262 (1999). https://doi.org/10.1071/AR97075

    Article  Google Scholar 

  28. O. Tietje and V. Hennings, “Accuracy of the saturated hydraulic conductivity prediction by pedo-transfer functions compared to the variability within FAO textural classes,” Geoderma 69 (1–2), 71–84 (1996). https://doi.org/10.1016/0016-7061(95)00050-X

    Article  Google Scholar 

  29. H. Vereecken, J. Maes, and J. Feyen, “Estimating unsaturated hydraulic conductivity from easily measured soil properties,” Soil Sci. 149 (1), 1–12 (1990).

    Article  Google Scholar 

  30. Y. Wang, M. A. Shao, Z. Liu, and R. Horton, “Regional-scale variation and distribution patterns of soil saturated hydraulic conductivities in surface and subsurface layers in the loessial soils of China,” J. Hydrol. 487, 13–23 (2013). https://doi.org/10.1016/j.jhydrol.2013.02.006

    Article  Google Scholar 

  31. J. H. M. Wösten, A. Lilly, A. Nemes, and C. Le Bas, “Development and use of a database of hydraulic properties of European soils,” Geoderma 90 (3–4), 169–185 (1999). https://doi.org/10.1016/S0016-7061(98)00132-3

    Article  Google Scholar 

  32. D. X. Yu, X. X. Jia, and L. M. Huang, “Spatial variation and influencing factors of saturated hydraulic conductivity in different soil layers of the loess area,” Chin. J. Soil Sci. 49 (5), 71–77 (2018).

    Google Scholar 

  33. D. Zanaga, R. Van De Kerchove, D. Daems, W. De Keersmaecker, C. Brockmann, G. Kirches, J. Wevers, O. Cartus, M. Santoro, S. Fritz, M. Lesiv, M. Herold, N. E. Tsendbazar, P. Xu, F. Ramoino, and O. Arino, ESA WorldCover 10m 2021 v200 (2022).

  34. Q. C. Zeng, X. Li, Y. H. Dong, Y. Y. Li, M. Chen, and S. S. An, “Ecological stoichiometry characteristics and physical-chemical properties of soils at different latitudes on the Loess Plateau,” J. Nat. Resour. 30 (5), 870–879 (2015).

    Google Scholar 

  35. C. L. Zhao, M. A. Shao, and X. X. Jia, “Study on the effect of freeze-thaw cycles on saturated soil hydraulic conductivity in loess area,” Chin. J. Soil Sci. 46 (1), 68–73 (2015).

    Google Scholar 

  36. Z. Zhang, C. F. Wei, D. T. Xie, M. Gao, and X. B. Zeng, “Effects of land use patterns on soil aggregate stability in Sichuan Basin, China,” Particuology 6 (3), 157–166 (2008).

    Article  Google Scholar 

  37. B. Zimmermann and H. Elsenbeer, “Spatial and temporal variability of soil saturated hydraulic conductivity in gradients of disturbance,” J. Hydrol. 361 (1–2), 78–95 (2008). https://doi.org/10.1016/j.jhydrol.2008.07.027

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China, project no. 52109064.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. H. Tao.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

These authors contributed equally to this work.

Supplementary Information

11475_2024_2112_MOESM1_ESM.docx

Supporting information includes Table S1, and Figs. S1 and S2.

Table S1. Validation data sources.

Fig. S1. Land cover distribution map of the Loess Plateau.

Fig. S2. Surface saturated hydraulic conductivity for different land cover.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Yan, H.K., Tao, W.H. et al. Spatial Distribution and Variation Characteristics of Saturated Hydrologic Conductivity on the Chinese Loess Plateau. Eurasian Soil Sc. (2024). https://doi.org/10.1134/S1064229323603475

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1064229323603475

Keywords:

Navigation