Skip to main content
Log in

Hysteresis of Water Retention Curve of the Capillarimetric Diapason in Saline Soils

  • SOIL PHYSICS
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The hysteresis effect of water retention curve (WRC) has significant implications for comprehending soil water and salt transport, especially in areas with soil salinization. This study evaluates the hysteresis of WRC in saline soils by measuring the drying and wetting WRC of silty clay loam exposed to different salinities using a tension meter. We find that WRC is influenced by the superposition coupling effect of salinity and dry density, which results in an upward shift of WRC and increases the soil water holding capacity. In addition, soil matrix suction also rises with the increasing salt concentration, leading to a gradual upward shift in WRC. The presence of salt in pore spaces weakens the “ink-bottle” effect, disjoining pressure and air entrapment effect, results in a 30.9% reduction in hysteresis of WRC with increasing salinity. Additionally, the volumetric shrinkage of low dry density silty clay loam also weakens the WRC hysteresis. Furthermore, we utilized a WRC hysteresis model that considers the “ink-bottle” effect and entrapped air, which reasonably predicts the main wetting WRC of saline silty clay loam. The root-mean-square error and mean absolute error between predicted and measured values are 0.027–0.039 and 0.036–0.060, respectively. These findings are significant to the research and guidance of salinization in expansive soil and heavy textured soil area where salinization occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. G. Ahmed, N. Koursari, I. V. Kuchin, and V. M. Starov, “Hysteresis of contact angle of sessile droplets on deformable substrates: influence of disjoining pressure,” Colloids Surf., A 546, 129–135 (2018). https://doi.org/10.1016/j.colsurfa.2018.03.006

    Article  CAS  Google Scholar 

  2. U. Al Aqtash and P. Bandini, “Prediction of unsaturated shear strength of an adobe soil from the soil–water characteristic curve,” Constr. Build. Mater. 98 (15), 892–899 (2015). https://doi.org/10.1016/j.conbuildmat.2015.07.188

    Article  Google Scholar 

  3. A. M. Al-Mahbashi, T. Y. Elkady, and M.A. Al-Shamrani, “Hysteresis soil-water characteristic curves of highly expansive clay,” Eur. J. Environ. Civ. Eng. 22 (9), 1041–1059 (2016). https://doi.org/10.1080/19648189.2016.1229232

    Article  Google Scholar 

  4. R. Baker and S. Frydman, “Unsaturated soil mechanics: critical review of physical foundations,” Eng. Geol. 106, 26–39 (2009). https://doi.org /https://doi.org/10.1016/j.enggeo.2009.02.010

    Article  Google Scholar 

  5. K. C. Cameron and G. D. Buchan, Porosity and Pore Size Distribution (CRC Press, Boca Raton, 2006).

    Google Scholar 

  6. H. Chen, K. Chen, and M. Yang, “A new hysteresis model of the water retention curve based on pore expansion and contraction,” Comput. Geotech. 121 (12), 103482 (2020). https://doi.org/10.1016/j.compgeo.2020.103482

    Article  Google Scholar 

  7. C. Cheng, Surface Physical Chemistry (Scientific and Technical Documentation Press, Beijing, 1995).

    Google Scholar 

  8. I. N. Daliakopoulos, I. K. Tsanis, A. Koutroulis, N. N. Kourgialas, A. E. Varouchakis, G. P. Karatzas, and C. J. Ritsema, “The threat of soil salinity: a European scale review,” Sci. Total Environ. 573, 727–739 (2016). https://doi.org/10.1016/j.scitotenv.2016.08.177

    Article  CAS  Google Scholar 

  9. H. Dashtian, N. Shokri, and M. Sahimi, “Pore-network model of evaporation-induced salt precipitation in porous media: the effect of correlations and heterogeneity,” Adv. Water Resour. 112, 59–71 (2018). https://doi.org/10.1016/j.advwatres.2017.12.004

    Article  CAS  Google Scholar 

  10. S. El hasini, O. Iben. Halima, M. El. Azzouzi, A. Douaik, K. Azim, and A. Zouahri, “Organic and inorganic remediation of soils affected by salinity in the Sebkha of Sed El Mesjoune – Marrakech (Morocco),” Soil Tillage Res. 193, 153–160 (2019). https://doi.org/10.1016/j.still.2019.06.003

  11. E. U. Eyo, S. Ng’ambi, and S. J. Abbey, “An overview of soil–water characteristic curves of stabilised soils and their influential factors,” J. King Saud Univ., Eng. Sci. 34 (1), 31–45 (2022). https://doi.org/10.1016/j.jksues.2020.07.013

    Article  Google Scholar 

  12. C. Fuentes, M. Zavala, and H. Saucedo, “Relationship between the storage coefficient and the soil-water retention curve in subsurface agricultural drainage systems: water table drawdown,” J. Irrig. Drain. Div. 135 (3), 279–285 (2009). https://doi.org/10.1061/(asce)0733-9437(2009)135:3(279)

    Article  Google Scholar 

  13. C. P. K. Gallage and T. Uchimura, “Effects of dry density and grain size distribution on soil-water characteristic curves of sandy soils,” Soils Found. 50 (1), 161–172 (2010). https://doi.org/10.3208/sandf.50.161

    Article  Google Scholar 

  14. T. Gebrenegus and T. A. Ghezzehei, “An index for degree of hysteresis in water retention,” Soil Sci. Soc. Am. J. 75 (6), 2122–2127 (2011). https://doi.org/10.2136/sssaj2011.0082N

    Article  CAS  Google Scholar 

  15. A. Gens, “Soil–environment interactions in geotechnical engineering,” Géotechnique 60 (1), 3–74 (2010). https://doi.org /https://doi.org/10.1680/geot.9.P.109

    Article  Google Scholar 

  16. D. Hillel, Fundamentals of Soil Physics (Academic Press, New York, 1980).

    Google Scholar 

  17. R. Horn, H. Domżżał, A. Słowińska-Jurkiewicz, and C. van Ouwerkerk, “Soil compaction processes and their effects on the structure of arable soils and the environment,” Soil Tillage Res. 35 (1–2), 23–36 (1995). https://doi.org/10.1016/0167-1987(95)00479-c

    Article  Google Scholar 

  18. H. Jiang and H. Bing, “Experimental and theoretical study on soil-water characteristic curve of sodium sulfate saline soil,” J. Glaciol. Geocryol. 43 (2), 497–509 (2021). https://doi.org /https://doi.org/10.7522/j.issn.1000-0240.2021.0045

    Article  Google Scholar 

  19. G. Kargas, K. X. Soulis, and P. Kerkides, “Implications of hysteresis on the horizontal soil water redistribution after infiltration,” Water 13 (19), 2273 (2021). https://doi.org/10.3390/w13192773

    Article  Google Scholar 

  20. J. B. Kool and J. C. Parker, “Development and evaluation of closed-form expressions for hysteretic soil hydraulic properties,” Water Resour. Res. 23 (1), 105–114 (1987). https://doi.org /https://doi.org/10.1029/WR023i001p00105

    Article  Google Scholar 

  21. I. Kuchin and V. Starov, “Hysteresis of contact angle of sessile droplets on smooth homogeneous solid substrates via disjoining/conjoining pressure,” Langmuir 31 (19), 5345–5352 (2015). https://doi.org/10.1021/acs.langmuir.5b01075

    Article  CAS  Google Scholar 

  22. A. K. Leung, A. Garg, and C. W. W. Ng, “Effects of plant roots on soil-water retention and induced suction in vegetated soil,” Eng. Geol. 193, 183–197 (2015). https://doi.org/10.1016/j.enggeo.2015.04.017

    Article  Google Scholar 

  23. W. J. Likos and N. Lu, “Hysteresis of capillary stress in unsaturated granular soil,” J. Eng. Mech. 130 (6), 646–655 (2004). https://doi.org/10.1061/(asce)0733-9399(2004)130:6(646)

    Article  Google Scholar 

  24. W. J. Likos, N. Lu, and J. W. Godt, “Hysteresis and uncertainty in soil water-retention curve parameters,” J. Geotech. Geoenviron. Eng. 140 (4) (2014). https://doi.org/10.1061/(asce)gt.1943-5606.0001071

  25. D. Liu, D. She, and X. Mu, “Water flow and salt transport in bare saline-sodic soils subjected to evaporation and intermittent irrigation with saline/distilled water,” Land Degrad. Dev. 30 (10), 1204–1218 (2019). https://doi.org/10.1002/ldr.3306

    Article  Google Scholar 

  26. K.-C. Ma, Y.-J. Lin, and Y.-C. Tan, “The influence of salinity on hysteresis of soil water-retention curves,” Hydrol. Processes 27 (17), 2524–2530 (2013). https://doi.org/10.1002/hyp.9393

    Article  Google Scholar 

  27. M. Marinas, J. W. Roy, and J. E. Smith, “Changes in entrapped gas content and hydraulic conductivity with pressure,” Ground Water 51 (1), 41–50 (2013). https://doi.org/10.1111/j.1745-6584.2012.00915.x

    Article  CAS  Google Scholar 

  28. M. Mirzavand, H. Ghasemieh, S. J. Sadatinejad, and R. Bagheri, “An overview on source, mechanism and investigation approaches in groundwater salinization studies,” Int. J. Environ. Sci. Technol. 17 (4), 2463–2476 (2020). https://doi.org/10.1007/s13762-020-02647-7

    Article  Google Scholar 

  29. R. Mukhopadhyay, B. Sarkar, H. S. Jat, P. C. Sharma, and N. S. Bolan, “Soil salinity under climate change: challenges for sustainable agriculture and food security,” J. Environ. Manage. 280, 111736 (2021). https://doi.org/10.1016/j.jenvman.2020.111736

    Article  CAS  Google Scholar 

  30. K. Nishida and S. Shiozawa, “Modeling and experimental determination of salt accumulation induced by root water uptake,” Soil Sci. Soc. Am. J. 74 (3), 774–786 (2010). https://doi.org/10.2136/sssaj2008.0425

    Article  CAS  Google Scholar 

  31. H. Q. Pham, D. G. Fredlund, and S. L. Barbour, “A study of hysteresis models for soil-water characteristic curves,” Can. Geotech. J. 42 (6), 1548–1568 (2005). https://doi.org/10.1139/t05-071

    Article  Google Scholar 

  32. J. R.Philip and D. A. D. Vries, “Moisture movement in porous materials under temperature gradients,” Trans., Am. Geophys. Union 38 (2), 222–232 (1957). https://doi.org/10.1029/TR038i002p00222

    Article  Google Scholar 

  33. X. Qiao, S. Ma, G. Pan, and G. Liu, “Effects of temperature change on the soil water characteristic curve and a prediction model for the Mu Us Bottomland, Northern China,” Water 11 (6), 1235 (2019). https://doi.org/10.3390/w11061235

    Article  CAS  Google Scholar 

  34. M. N. Rad, N. Shokri, A. Keshmiri, and P. J. Withers, “Effects of grain and pore size on salt precipitation during evaporation from porous media,” Transp. Porous Media 110 (2), 281–294 (2015). https://doi.org/10.1007/s11242-015-0515-8

    Article  CAS  Google Scholar 

  35. S. M. Rao and K. Revanasiddappa, “Role of matric suction in collapse of compacted clay soil,” J. Geotech. Geoenviron. Eng. 126 (1), 85–90 (2000). https://doi.org/10.1061/(asce)1090-0241(2000)126:1(85)

    Article  Google Scholar 

  36. J. Ren and S. K. Vanapalli, “Comparison of soil-freezing and soil-water characteristic curves of two Canadian soils,” Vadose Zone J. 18 (1), 1–14 (2019). https://doi.org/10.2136/vzj2018.10.0185

    Article  CAS  Google Scholar 

  37. A. S. Rogowski, “Watershed physics: model of the soil moisture characteristic,” Water Resour. Res. 7 (6), 1575–1582 (1971). https://doi.org/10.1029/WR007i006p01575

    Article  Google Scholar 

  38. S. Roy and S. Rajesh, “Simplified model to predict features of soil–water retention curve accounting for stress state conditions,” Int. J. Geomech. 20 (3), 04019191 (2020). https://doi.org/10.1061/(asce)gm.1943-5622.0001591

    Article  Google Scholar 

  39. C. A. Scanlan, Ph. D. Thesis (Univ. Western Australia, Perth, 2009)

  40. P. Scholl, D. Leitner, G. Kammerer, W. Loiskandl, H. P. Kaul, and G. Bodner, “Root induced changes of effective 1D hydraulic properties in a soil column,” Plant Soil 381 (1–2), 193–213 (2014). https://doi.org/10.1007/s11104-014-2121-x

    Article  CAS  Google Scholar 

  41. R. S. Sharma and M. H. A. Mohamed, “An experimental investigation of LNAPL migration in an unsaturated/saturated sand,” Eng. Geol. 70 (3–4), 305–313 (2003). https://doi.org/10.1016/s0013-7952(03)00098-x

    Article  Google Scholar 

  42. A. Singh, “Soil salinization and waterlogging: a threat to environment and agricultural sustainability,” Ecol. Indic. 57, 128–130 (2015). https://doi.org/10.1016/j.ecolind.2015.04.027

    Article  Google Scholar 

  43. I. I. Sudnitsyn, “Effect of the size of elementary soil particles on the soil moisture characteristic curve,” Eurasian Soil Sci. 48 (7), 735–741 (2015). https://doi.org/10.1134/s1064229315050117

    Article  Google Scholar 

  44. D. Sun, Y. Zang, P. Feng, and S. Semprich, “Quasi-saturated zones induced by rainfall infiltration,” Transp. Porous Media 112 (1), 77–104 (2016). https://doi.org/10.1007/s11242-016-0633-y

    Article  Google Scholar 

  45. E. Taleisnik, “Water retention capacity in root segments differing in the degree of exodermis development,” Ann. Bot. 83 (1), 19–27 (1999). https://doi.org/10.1006/anbo.1998.0781

    Article  Google Scholar 

  46. X. Tan, X. Wang, S. Khoshnevisan, X. Hou, and F. Zha, “Seepage analysis of earth dams considering spatial variability of hydraulic parameters,” Eng. Geol. 228, 260–269 (2017). https://doi.org/10.1016/j.enggeo.2017.08.018

    Article  Google Scholar 

  47. C. Tang, B. Shi, C. Liu, W. Suo, and L. Gao, “Experimental characterization of shrinkage and desiccation cracking in thin clay layer,” Appl. Clay Sci. 52 (1–2), 69–77 (2011). https://doi.org/10.1016/j.clay.2011.01.032

    Article  CAS  Google Scholar 

  48. G. Tao, Z. Li, L. Liu, Y. Chen, K. Gu, and M. Adamu, “Effects of contact angle on the hysteresis effect of soil-water characteristic curves during dry-wet cycles,” Adv. Civ. Eng. 2021, 1–11 (2021). https://doi.org/10.1155/2021/6683859

    Article  Google Scholar 

  49. H. Tian, C. Wei, H. Wei, and J. Zhou, “Freezing and thawing characteristics of frozen soils: bound water content and hysteresis phenomenon,” Cold Reg. Sci. Technol. 103, 74–81 (2014). https://doi.org/10.1016/j.coldregions.2014.03.007

    Article  Google Scholar 

  50. O. Traoré, V. Groleau-Renaud, S. Plantureux, A. Tubeileh, and V. Boeuf-Tremblay, “Effect of root mucilage and modelled root exudates on soil structure,” Eur. J. Soil Sci. 51 (4), 575–581 (2000). https://doi.org/10.1111/j.1365-2389.2000.00348.x

    Article  Google Scholar 

  51. M. Tuller and D. O. Miller, “Water films and scaling of soil characteristic curves at low water contents,” Water Resour. Res. 41 (9), 1–6 (2005). https://doi.org/10.1029/2005wr004142

    Article  Google Scholar 

  52. M. T. van Genuchten, “A closed-form equation for predicting the hydraulic conductivity of unsaturated soils,” Soil Sci. Soc. Am. J. 44 (5), 892–898 (1980). https://doi.org/10.2136/sssaj1980.03615995004400050002x

    Article  Google Scholar 

  53. S. K. Vanapalli, D. G. Fredlund, and D. E. Pufahl, “The influence of soil structure and stress history on the soil-water characteristics of compacted till,” Geotechnique 51 (6), 573–576 (1999). https://doi.org/10.1680/geot.51.6.573.40456

    Article  Google Scholar 

  54. H. Wang, A. Garg, Y. Ping, S. Sreedeep, and R. Chen, “Effects of biochar derived from coconut shell on soil hydraulic properties under salt stress in roadside bioretention,” Waste Biomass Valorization 14, 1005–1022 (2023). https://doi.org/10.1007/s12649-022-01877-9

    Article  CAS  Google Scholar 

  55. Y. Wang, A. Zhang, W. Ren, and L. Niu, “Study on the soil water characteristic curve and its fitting model of Ili loess with high level of soluble salts,” J. Hydrol. 578, 124067 (2019). https://doi.org/10.1016/j.jhydrol.2019.124067

    Article  CAS  Google Scholar 

  56. T. Wen, P. Wang, L. Shao, and X. Guo, “Experimental investigations of soil shrinkage characteristics and their effects on the soil water characteristic curve,” Eng. Geol. 284, 106035 (2021). https://doi.org/10.1016/j.enggeo.2021.106035

    Article  Google Scholar 

  57. C. Yang, D. Sheng, and J. P. Carter, “Effect of hydraulic hysteresis on seepage analysis for unsaturated soils,” Comput. Geotech. 41, 36–56 (2012). https://doi.org/10.1016/j.compgeo.2011.11.006

    Article  Google Scholar 

  58. H.-F. Yeh, T.-T. Huang, Y.-S. Yang, and C.-C. Ke, “Influence of uncertainty of soil hydraulic parameters on stability of unsaturated slopes based on Bayesian updating,” Geofluids 2021, 1–13 (2021). https://doi.org/10.1155/2021/6629969

    Article  Google Scholar 

  59. Q. Zhai, H. Rahardjo, A. Satyanaga, G. Dai, and Y. Du, “Estimation of the wetting scanning curves for sandy soils,” Eng. Geol. 272, 105635 (2020). https://doi.org/10.1016/j.enggeo.2020.105635

    Article  Google Scholar 

  60. Q. Zhai, H. Rahardjo, and A. Satyanaga, “Uncertainty in the estimation of hysteresis of soil-water characteristic curve,” Environ. Geotech. 6 (4), 204–213 (2019). https://doi.org/10.1680/jenge.17.00008

    Article  Google Scholar 

  61. J. Zhang, M. K. Borg, K. Sefiane, and J. M. Reese, “Wetting and evaporation of salt-water nanodroplets: a molecular dynamics investigation,” Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 92 (5), 052403 (2015). https://doi.org/10.1103/PhysRevE.92.052403

    Article  CAS  Google Scholar 

  62. T. Zhang, Y. Deng, Y. Cui, H. Lan, F. Zhang, and H. Zhang, “Porewater salinity effect on flocculation and desiccation cracking behaviour of kaolin and bentonite considering working condition,” Eng. Geol. 251, 11–23 (2019). https://doi.org/10.1016/j.enggeo.2019.02.007

    Article  Google Scholar 

  63. C. Zhang, Z. Liu, and P. Deng, “Contact angle of soil minerals: a molecular dynamics study,” Comput. Geotech. 75, 48–56 (2016). https://doi.org/10.1016/j.compgeo.2016.01.012

    Article  Google Scholar 

  64. M. Zhang, H. Zhang, L. Jia, and S. Cui, “Salt content impact on the unsaturated property of bentonite–sand buffer backfilling materials,” Nucl. Eng. Des. 250, 35–41 (2012). https://doi.org/10.1016/j.nucengdes.2012.05.012

    Article  CAS  Google Scholar 

  65. C. Zhao, J. Li, Y. Liu, Q. Cai, and A. Saman, “Discussion on some fundamental problems in unsaturated soil mechanics,” Rock Soil Mech. 34 (7), 1825–1831 (2013). https://doi.org /https://doi.org/10.16285/j.rsm.2013.07.003

    Article  Google Scholar 

  66. Y. Zhao, T. Wen, L. Shao, R. Chen, X. Sun, L. Huang, and X. Chen, “Predicting hysteresis loops of the soil water characteristic curve from initial drying,” Soil Sci. Soc. Am. J. 84 (5), 1642–1649 (2020). https://doi.org/10.1002/saj2.20125

    Article  CAS  Google Scholar 

  67. J. Zhuang, J. F. McCarthy, E. Perfect, L. M. Mayer, and J. D. Jastrow, “Soil water hysteresis in water-stable microaggregates as affected by organic matter,” Soil Sci. Soc. Am. J. 72 (1), 212–220 (2008). https://doi.org/10.2136/sssaj2007.0001S6

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to thank all the members of the project group for their help with laboratory work.

Funding

This work was supported by the Natural Science Foundation of Hubei Province of China, project no. 2020CFB750, the National Natural Science Foundation of China, project no. 41602246, the Science and Technology Project of Hubei Geological Bureau, project no. KJ2021-8, and the College Students’ Innovative Entrepreneurial Training Plan Program project no. Yz2022344.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siyuan Huo.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

11475_2024_2111_MOESM1_ESM.docx

Fig. S1 . Schematic diagram of WRC hysteresis index: (a) the area between the drying and wetting curve (H); (b) the maximum deviation in soil water moisture between drying and wetting curve (Hd).

Fig. S2 . The drying WRC of silty clay loam under different salinity: (a) 1.3 g/cm3, (b) 1.4 g/cm3, (c) 1.5 g/cm3 and (d) 1.6 g/cm3.

Fig. S3 . The WRC drying curves of silty clay loam under different dry density:(a) TDS0, (b) TDS10, (c) TDS20, (d) TDS30, (e) TDS40, (f) TDS50, (g) TDS75 and (h) TDS100.

Fig. S4 . The wetting WRC of silty clay loam under different salinity: (a) 1.3 g/cm3, (b) 1.4 g/cm3, (c) 1.5 g/cm3 and (d) 1.6 g/cm3

Fig. S5 . Illustration of hysteresis of WRC due to (a) “ink-bottle” effect, (b) air entrapment and (c) contact angle hysteresis

Fig. S6 . The impact of salinity on surface tension: (a) The relationship between soil salt concentration and surface tension and (b) The calculated WRC drying curve with considering the effect of salinity on surface tension.

Fig. S7 . The relationship between volume shrinkage coefficient and salinity under varying dry densities: (a) 1.3 g/cm3, (b) 1.4 g/cm3 and (c) 1.5 g/cm3.

Fig. S8 . Characteristics of dynamic changes in soil salinity.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiankun Tan, Huo, S., Wang, D. et al. Hysteresis of Water Retention Curve of the Capillarimetric Diapason in Saline Soils. Eurasian Soil Sc. (2024). https://doi.org/10.1134/S1064229323603426

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1064229323603426

Keywords:

Navigation