Skip to main content
Log in

Labile and Stable Organic Carbon Fractions in Water Stable Aggregates and Their Contribution to Aggregate Stability in Paddy Soils

  • SOIL PHYSICS
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Evidence has suggested that either labile organic carbon (OC) or stable OC play a role in improving aggregate stability. Therefore, this study determined the OC fractions in water stable aggregates (WSA) and their contribution to the formation of the WSA in paddy soils, on the Central Plain of Thailand. Analysis of the OC fractions in the WSA was determined using wet oxidation with hydrogen peroxide (H2O2). The chemical composition of the organic compounds in the WSA was investigated using Fourier transform mid-infrared (FT-IR) spectroscopy. The results showed that the WSA content of the studied soils significantly increased with increasing organic and inorganic cementing/flocculating agents, such as soil organic carbon, clay, polyvalent cations, and sesquioxides. The labile OC and stable OC contents in the WSA also significantly increased with increased WSA content, suggesting the physical protection of OC fractions against microbial decomposition. The FT-IR analysis revealed that labile OC in the WSA, both before and after wet oxidation with H2O2, was dominated by polysaccharides, supporting the physical protection of labile OC by the WSA. Paddy soils containing higher organic and inorganic cementing/flocculating agents had higher stable OC, such as hydrophobic aromatic compounds, in the WSA, compared to paddy soils containing lower organic and inorganic cementing/flocculating agents. In turn, the WSA content of the soils in this study significantly increased with increases in the hydrophobic aromatic compounds in the WSA, suggesting the important role of stable hydrophobic organic compounds in enhancing the formation and stabilization of soil aggregates in these paddy soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. E. Amezketa, “Soil aggregate stability: a review,” J. Sustainable Agric. 14, 83–151 (1999). https://doi.org/10.1300/j064v14n02_08

    Article  Google Scholar 

  2. A. S. B. Armstrong and T. W. Tanton, “Gypsum applications to aggregated saline—sodic clay topsoils,” Eur. J. Soil Sci. 43, 249–260 (1992). https://doi.org/10.1111/j.1365-2389.1992.tb00133.x

    Article  CAS  Google Scholar 

  3. J. A. Baldock and P. N. Nelson, “Soil organic matter,” in Handbook of Soil Science, Ed. by M. E. Sumner (CRC Press, Boca Raton, 2000), pp. B25–B84.

    Google Scholar 

  4. J. A. Baldock, J. M. Oades, A. G. Waters, X. Peng, A. M. Vassallo, and M. A. Wilson, “Aspects of the chemical structure of soil organic materials as revealed by solid-state13C NMR spectroscopy,” Biogeochemistry 16, 1–42 (1992). https://doi.org/10.1007/BF02402261

    Article  CAS  Google Scholar 

  5. J. A. Baldock and J. O. Skjemstad, “Role of the soil matrix and minerals in protecting natural organic materials against biological attack,” Org. Geochem. 31, 697–710 (2000). https://doi.org/10.1016/S0146-6380(00)00049-8

    Article  CAS  Google Scholar 

  6. A. Bouajila and T. Gallali, “Soil organic carbon fractions and aggregate stability in carbonated and no carbonated soils in Tunisia,” J. Agron. 7, 127–137 (2008). https://doi.org/10.3923/ja.2008.127.137

    Article  CAS  Google Scholar 

  7. C. J. Bronick and R. Lal, “Soil structure and management: a review,” Geoderma 124, 3–22 (2005). https://doi.org/10.1016/j.geoderma.2004.03.005

    Article  CAS  Google Scholar 

  8. S. Bruun, I. K. Thomsen, B. T. Christensen, and L. Jensen, “In search of stable soil organic carbon fractions: a comparison of methods applied to soils labelled with 14C for 40 days or 40 years,” Eur. J. Soil Sci. 59, 247–256 (2007). https://doi.org/10.1111/j.1365-2389.2007.00985.x

    Article  CAS  Google Scholar 

  9. Y.-Q. Cheng, L.-Z. Yang, Z.-H. Cao, E. Ci, and S. Yin, “Chronosequential changes of selected pedogenic properties in paddy soils as compared with non-paddy soils,” Geoderma 151, 31–41 (2009). https://doi.org/10.1016/j.geoderma.2009.03.016

    Article  CAS  Google Scholar 

  10. C. Chenu, Y. Le Bissonnais, and D. Arrouays, “Organic matter influence on clay wettability and soil aggregate stability,” Soil Sci. Soc. Am. J. 64, 1479–1486 (2000). https://doi.org/10.2136/sssaj2000.6441479x

    Article  CAS  Google Scholar 

  11. L. P. D’Acqui, G. J. Churchman, L. J. Janik, G. G. Ristori, and D. A. Weissmann, “Effect of organic matter removal by low-temperature ashing on dispersion of undisturbed aggregates from a tropical crusting soil,” Geoderma 93, 311–324 (1999). https://doi.org/10.1016/S0016-7061(99)00073-7

    Article  Google Scholar 

  12. R. Dalal and B. J. Bridge, “Aggregation and organic matter storage in sub-humid and semi-arid soils,” in Structure and Organic Matter Storage in Agricultural Soils, Ed. by M. R. Carter and B. A. Stewart (Lewis Publishers, CRC Press, Inc., Boca Raton, 1996), pp. 263–307. https://doi.org/10.1201/9781003075561-11

  13. M. Deurer, K. Müller, C. Van Den Dijssel, K. Mason, J. Carter, and B. E. Clothier, “Is soil water repellency a function of soil order and proneness to drought? A survey of soils under pasture in the North Island of New Zealand,” Eur. J. Soil Sci. 62, 765–779 (2011). https://doi.org/10.1111/j.1365-2389.2011.01392.x

    Article  CAS  Google Scholar 

  14. J. M. Dorioz, M. Robert, and C. Chenu, “The role of roots, fungi and bacteria on clay particle organization. An experimental approach,” Geoderma 56, 179–194 (1993). https://doi.org/10.1016/0016-7061(93)90109-X

    Article  Google Scholar 

  15. M. E. Duval, J. A. Galantini, J. M. Martínez, and F. Limbozzi, “Labile soil organic carbon for assessing soil quality: influence of management practices and edaphic conditions,” Catena 171, 316–326 (2018). https://doi.org/10.1016/j.catena.2018.07.023

    Article  CAS  Google Scholar 

  16. C. Figueiredo, D. Resck, and M. A. Carneiro, “Labile and stable fractions of soil organic matter under management systems and native,” Rev. Bras. Cienc. Solo 34, 907–916 (2010). https://doi.org/10.1590/S0100-06832010000300032

    Article  Google Scholar 

  17. E. Griffiths and R. G. Burns, “Interaction between phenolic substances and microbial polysaccharides in soil aggregation,” Plant Soil 36, 599–612 (1972). https://doi.org/10.1007/BF01373510

    Article  CAS  Google Scholar 

  18. G. Haberhauer, B. Rafferty, F. Strebl, and M. H. Gerzabek, “Comparison of the composition of forest soil litter derived from three different sites at various decompositional stages using FTIR spectroscopy,” Geoderma 83, 331–342 (1998). https://doi.org/10.1016/S0016-7061(98)00008-1

    Article  CAS  Google Scholar 

  19. R. J. Haynes, “Labile organic matter fractions as central components of the quality of agricultural soils: an overview,” Adv. Agron. 5, 221–265 (2005).

    Article  Google Scholar 

  20. M. Helfrich, H. Flessa, R. Mikutta, A. Dreves, and B. Ludwig, “Comparison of chemical fractionation methods for isolating stable soil organic carbon pools,” Eur. J. Soil Sci. 58, 1316–1329 (2007). https://doi.org/10.1111/j.1365-2389.2007.00926.x

    Article  CAS  Google Scholar 

  21. IUSS Working Group WRB, World Reference Base on Soil Resources 2014, Update 2015 (FAO, Rome, 2015).

    Google Scholar 

  22. H. H. Janzen, C. A. Campbell, B. H. Ellert, and E. Bremer, “Soil organic matter dynamics and their relationship to soil quality,” in Developments in Soil Science, Ed. by E. G. Gregorich and M. R. Carter (Elsevier, 1997), pp. 277–291. https://doi.org/10.1016/S0166-2481(97)80039-6

  23. J. D. Jastrow, “Soil aggregate formation and the accrual of particulate and mineral-associated organic matter,” Soil Biol. Biochem. 28, 665–676 (1996). https://doi.org/10.1016/0038-0717(95)00159-X

    Article  CAS  Google Scholar 

  24. J. L. Jensen, P. Schjønning, C. W. Watts, B. T. Christensen, C. Peltre, and L. J. Munkholm, “Relating soil C and organic matter fractions to soil structural stability,” Geoderma 337, 834–843 (2019). https://doi.org/10.1016/j.geoderma.2018.10.034

    Article  CAS  Google Scholar 

  25. W. Jindaluang, I. Kheoruenromne, A. Suddhiprakarn, B. P Singh, and B. Singh, “Influence of soil texture and mineralogy on organic matter content and composition in physically separated fractions soils of Thailand,” Geoderma 195–196, 207–219 (2013).

    Article  Google Scholar 

  26. M. Kahle, M. Kleber, and R. Jahn, “Retention of dissolved organic matter by phyllosilicate and soil clay fractions in relation to mineral properties,” Org. Geochem. 35, 269–276 (2004). https://doi.org/10.1016/j.orggeochem.2003.11.008

    Article  CAS  Google Scholar 

  27. W. D. Kemper and R. C. Rosenau, “Aggregate stability and size distribution,” in Methods of Soil Analysis, Part I: Physical and Mineralogical Methods, Ed. by A. Klute (Am. Soc. Agron., Madison, 1986), pp. 425–442. https://doi.org/10.2136/sssabookser5.1.2ed.c17

  28. M. Kleber, R. Mikutta, M. S. Torn, and R. Jahn, “Poorly crystalline mineral phases protect organic matter in acid subsoil horizons,” Eur. J. Soil Sci. 56, 717–725 (2005). https://doi.org/10.1111/j.1365-2389.2005.00706.x

    Article  CAS  Google Scholar 

  29. E. Kristensen, S. I. Ahmed, and A. H. Devol, “Aerobic and anaerobic decomposition of organic matter in marine sediment: which is fastest?,” Limnol. Oceanogr. 40, 1430–1437 (1995). https://doi.org/10.4319/lo.1995.40.8.1430

    Article  CAS  Google Scholar 

  30. E. Krull, J. Baldock, and J. Skjemstad, “Importance of mechanisms and processes of the stabilisation of soil organic matter for modelling carbon turnover,” Funct. Plant Biol. 30, 207–222 (2003). https://doi.org/10.1071/FP02085

    Article  Google Scholar 

  31. P. Kunmala, W. Jindaluang, and T. Darunsontaya, “Distribution of organic carbon fractions in soil aggregates and their contribution to soil aggregate formation of paddy soils,” Commun. Soil Sci. Plant Anal. 54, 1350–1367 (2023). https://doi.org/10.1080/00103624.2022.2144875

    Article  CAS  Google Scholar 

  32. L. Li, X. Zhang, P. Zhang, J. Zheng, and G. Pan, “Variation of organic carbon and nitrogen in aggregate size fractions of a paddy soil under fertilisation practices from Tai Lake Region, China,” J. Sci. Food Agric. 87, 1052–1058 (2007). https://doi.org/10.1002/jsfa.2806

    Article  CAS  Google Scholar 

  33. G. Liping and L. Erda, “Carbon sink in cropland soils and the emission of greenhouse gases from paddy soils: a review of work in China,” Chemosphere: Global Change Sci. 3, 413–418 (2001). https://doi.org/10.1016/S1465-9972(01)00019-8

    Article  Google Scholar 

  34. Y. Liu, P. Wang, Y. Ding, H. Lu, L. Li, K. Cheng, J. Zheng, T. Filley, X. Zhang, J. Zheng, and G. Pan, “Microbial activity promoted with organic carbon accumulation in macroaggregates of paddy soils under long-term rice cultivation,” Biogeosciences 13, 6565–6586 (2016). https://doi.org/10.5194/bg-13-6565-2016

    Article  CAS  Google Scholar 

  35. G. Lu, K. Sakagami, H. Tanaka, and R. Hamada, “Role of soil organic matter in stabilization of water-stable aggregates in Soils under different types of land use,” J. Soil Sci. Plant Nutr. 44, 147–155 (1998). https://doi.org/10.1080/00380768.1998.10414435

    Article  Google Scholar 

  36. D. A. Martens, “Management and crop residue influence soil aggregate stability,” J. Environ. Qual. 29, 723–727 (2000). https://doi.org/10.2134/jeq2000.00472425002900030006x

    Article  CAS  Google Scholar 

  37. D. A. Martens, “Relationship between plant phenolic acids related during soil mineralization and aggregate stabilization,” Soil Sci. Soc. Am. J. 66, 1857–1867 (2002). https://doi.org/10.2136/sssaj2002.1857

    Article  CAS  Google Scholar 

  38. D. A. Martens and K. L. Loeffelmann, “Improved accounting of carbohydrate carbon from plants and soils,” Soil Biol. Biochem. 34, 1393–1399 (2002). https://doi.org/10.1016/S0038-0717(02)00082-2

    Article  CAS  Google Scholar 

  39. J. P. Martin, “Decomposition and binding action of polysaccharides in soil,” Soil Biol. Biochem. 3, 33–41 (1971). https://doi.org/10.1016/0038-0717(71)90029-0

    Article  CAS  Google Scholar 

  40. J. A. McKeague and J. H. Day, “Dithionite- and oxalate-extractable Fe and Al as aids in differentiating various classes of soils,” Can. J. Soil Sci. 46, 13–22 (1966). https://doi.org/10.4141/cjss66-003

    Article  CAS  Google Scholar 

  41. O. P. Mehra and M. L. Jackson, “Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate,” Clays Clay Miner. 7, 317–327 (1958). https://doi.org/10.1346/CCMN.1958.0070122

    Article  Google Scholar 

  42. N. C. Molina, M. R. Caceres, and A. M. Pietroboni, “Factors affecting aggregate stability and water dispersible clay of recently cultivated semiarid soils of Argentina,” Arid Land Res. Manage. 15, 77–87 (2001). https://doi.org/10.1080/15324980118369

    Article  CAS  Google Scholar 

  43. C. M. Monreal, M. Schnitzer, H. R. Schulten, C. A. Campbell, and D. W. Anderson, “Soil organic structures in macro and microaggregates of a cultivated Brown Chernozem,” Soil Biol. Biochem. 27, 845–853 (1995). https://doi.org/10.1016/0038-0717(94)00220-U

    Article  CAS  Google Scholar 

  44. National Soil Survey Center, Soil Survey Laboratory Methods Manual (Government Printing Office, Washington D.C., 1996).

    Google Scholar 

  45. D. W. Nelson and L. E. Sommers, “Total carbon, organic carbon, and organic matter,” in Methods of Soil Analysis, Part III: Chemical Method, Ed. by D. L. Sparks, A. L. Page, P. A. Helmke, and R. H. Loeppert (Am. Soc. Agron. Inc., Wisconsin, 1996), pp. 961–1010. https://doi.org/10.2136/sssabookser5.3.c34

  46. J. Niemeyer, Y. Chen, and J.-M. Bollag, “Characterization of humic acids, composts, and peat by diffuse reflectance Fourier-transform infrared spectroscopy,” Soil Sci. Soc. Am. J. 56, 135–140 (1992). https://doi.org/10.2136/sssaj1992.03615995005600010021x

    Article  CAS  Google Scholar 

  47. J. M. Oades, “The role of biology in the formation, stabilization and degradation of soil structure,” Geoderma 56, 377–400 (1993). https://doi.org/10.1016/0016-7061(93)90123-3

    Article  Google Scholar 

  48. J. M. Oades and A. G. Waters, “Aggregate hierarchy in soils,” Soil Res. 29, 815–828 (1991).

    Article  Google Scholar 

  49. C. C. Opara, “Soil microaggregates stability under different land use types in southeastern Nigeria,” Catena 79, 103–112 (2009). https://doi.org/10.1016/j.catena.2009.06.001

    Article  CAS  Google Scholar 

  50. G. Pan, L. Wu, L. Li, X. Zhang, W. Gong, and Y. Wood, “Organic carbon stratification and size distribution of three typical paddy soils from Taihu Lake region, China,” J. Environ. Sci. 20, 456–463 (2008). https://doi.org/10.1016/S1001-0742(08)62079-3

    Article  CAS  Google Scholar 

  51. G. X. Pan, L. Q. Li, Q. Zhang, X. K. Wang, X. B. Sun, X. B. Xu, and D. A. Jiang, “Organic carbon stock in topsoil of Jiangsu Province, China, and the recent trend of carbon sequestration,” J. Environ. Sci. 17, 1–7 (2005).

    CAS  Google Scholar 

  52. A. Piccolo and J. S. C. Mbagwu, “Effects of different organic waste amendments on soil microaggregates stability and molecular sizes of humic substances,” Plant Soil 123, 27–37 (1990). https://doi.org/10.1007/BF00009923

    Article  CAS  Google Scholar 

  53. A. Piccolo, G. Pietramellara, and J. S. C. Mbagwu, “Use of humic substances as soil conditioners to increase aggregate stability,” Geoderma 75, 267–277 (1997). https://doi.org/10.1016/S0016-7061(96)00092-4

    Article  CAS  Google Scholar 

  54. K. Sahrawat, “Organic matter accumulation in submerged soils,” Adv. Agron. 81, 169–201 (2003). https://doi.org/10.1016/S0065-2113(03)81004-0

    Article  CAS  Google Scholar 

  55. J. Six, H. Bossuyt, S. D. Degryze, and K. Denef, “A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics,” Soil Tillage Res. 79, 7–31 (2004). https://doi.org/10.1016/j.still.2004.03.008

    Article  Google Scholar 

  56. J. Six, R. T. Conant, E. A. Paul, and K. Paustian, “Stabilization mechanisms of soil organic matter: implications for C-saturation of soils,” Plant Soil 241, 155–176 (2002). https://doi.org/10.1023/A:1016125726789

    Article  CAS  Google Scholar 

  57. J. Six, E. T. Elliott, and K. Paustian, “Soil structure and soil organic matter II. A normalized stability index and the effect of mineralogy,” Soil Sci. Soc. Am. J. 64, 1042–1049 (2000).

    Article  CAS  Google Scholar 

  58. J. Six and K. Paustian, “Aggregate-associated soil organic matter as an ecosystem property and a measurement tool,” Soil Biol. Biochem. 68, A4–A9 (2014). https://doi.org/10.1016/j.soilbio.2013.06.014

    Article  CAS  Google Scholar 

  59. Soil Survey Staff, Keys to Soil Taxonomy (USDA and Natural Resources Conservation Service, Washington, D.C., 2022).

    Google Scholar 

  60. P. Sollins, P. Homann, and B. A. Caldwell, “Stabilization and destabilization of soil organic matter: mechanisms and controls,” Geoderma 74, 65–105 (1996). https://doi.org/10.1016/S0016-7061(96)00036-5

    Article  Google Scholar 

  61. F. J. Stevenson, “Humus chemistry: genesis, composition, reactions,” in Humus Chemistry, Genesis, Composition, Reactions, Ed. by F. J. Stevenson (Wiley, New York, 1994), pp. 24–58

    Google Scholar 

  62. L. A. Sullivan, “Soil organic matter, air encapsulation and water-stable aggregation,” Eur. J. Soil Sci. 41, 529–534 (1990). https://doi.org/10.1111/j.1365-2389.1990.tb00084.x

    Article  Google Scholar 

  63. J. M. Tisdall, “Formation of soil aggregates and accumulation of soil organic matter,” in Structure and Organic Matter Storage in Agricultural Soils, Ed. by M. R. Carter and B. A. Stewart (Lewis Publishers, Boca Raton, 1996), pp. 57–96. https://doi.org/10.1201/9781003075561-5

  64. J. M. Tisdall and J. M. Oades, “Organic matter and water-stable aggregates in soils,” Eur. J. Soil Sci. 33, 141–163 (1982). https://doi.org/10.1111/j.1365-2389.1982.tb01755.x

    Article  CAS  Google Scholar 

  65. D. A. Ushkova, U. A. Konkina, I. V. Gorepekin, D. I. Potapov, E. V. Shein, and G. N. Fedotov, “Stability of aggregates of arable soils: experimental determination and normative characteristics,” Eurasian Soil Sci. 56 (2), 177–183 (2023). https://doi.org/10.1134/S1064229322601792

    Article  Google Scholar 

  66. C. Varadachari, A. Mondal, and K. Ghosh, “Some aspects of clay-humus complexation: effect of exchangeable cations and lattice charge,” Soil Sci. 151, 220–227 (1991). https://doi.org/10.1097/00010694-199103000-00004

    Article  CAS  Google Scholar 

  67. A. Walkley and I. A. Black, “An examination of Degtjareff method for determining soil organic matter: a proposed modification of chromic acid titration method,” Soil Sci. 37, 29‒38 (1934).

    Article  CAS  Google Scholar 

  68. H. Wang, D. Guan, R. Zhang, Y. Chen, Y. Hu, and L. Xiao, “Soil aggregates and organic carbon affected by the land use change from rice paddy to vegetable field,” Ecol. Eng. 70, 206–211 (2014). https://doi.org/10.1016/j.ecoleng.2014.05.027

    Article  Google Scholar 

  69. L. Wissing, A. Kölbl, W. Häusler, P. Schad, Z.-H. Cao, and I. Kögel-Knabner, “Management-induced organic carbon accumulation in paddy soils: the role of organo-mineral associations,” Soil Tillage Res. 126, 60–71 (2013). https://doi.org/10.1016/j.still.2012.08.004

    Article  Google Scholar 

  70. S. Woche, M.-O. Goebel, M. Kirkham, R. Horton, R. Ploeg, and J. Bachmann, “Contact angle of soils as affected by depth, texture, and land management,” Eur. J. Soil Sci. 56, 239–251 (2005). https://doi.org/10.1111/j.1365-2389.2004.00664.x

    Article  Google Scholar 

  71. Y. Yang, J. Guo, G. Chen, Y. Yin, R. Gao, and L. Chengfang, “Effects of forest conversion on soil labile organic carbon fractions and aggregate stability in subtropical China,” Plant Soil 323, 153–162 (2009). https://doi.org/10.1007/s11104-009-9921-4

    Article  CAS  Google Scholar 

  72. S. Yoshikawa, Y. Kuroda, H. Ueno, M. Kajiura, and N. Ae, “Effect of phenolic acids on the formation and stabilization of soil aggregates,” J. Soil Sci. Plant Nutr. 64, 323–334 (2018). https://doi.org/10.1080/00380768.2018.1431011

    Article  CAS  Google Scholar 

  73. W. Zech, N. Senesi, G. Guggenberger, K. Kaiser, J. Lehmann, T. M. Miano, A. Miltner, and G. Schroth, “Factors controlling humification and mineralization of soil organic matter in the tropics,” Geoderma 79, 117–161 (1997). https://doi.org/10.1016/S0016-7061(97)00040-2

    Article  CAS  Google Scholar 

  74. M. Zhang and Z. He, “Long-term changes in organic carbon and nutrients of an Ultisol under rice cropping in southeast China,” Geoderma 118, 167–179 (2004). https://doi.org/10.1016/S0016-7061(03)00191-5

    Article  CAS  Google Scholar 

  75. P. Zhou, G. Song, G. Pan, L. Li, and X. Zhang, “Role of chemical protection by binding to oxyhydrates in SOC sequestration in three typical paddy soils under long-term agro-ecosystem experiments from South China,” Geoderma 153, 52–60 (2009). https://doi.org/10.1016/j.geoderma.2009.07.018

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful for financial support from a Graduate Program Scholarship from the Graduate School, Kasetsart University, Bangkok, Thailand. Staff in the Department of Soil Science and the Department of Forestry at Kasetsart University provided valuable assistance.

Funding

This work was supported in part by the Graduate Progra-m Scholarship from the Graduate School, Kasetsart University, Bangkok, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Jindaluang.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kunmala, P., Jindaluang, W. & Darunsontaya, T. Labile and Stable Organic Carbon Fractions in Water Stable Aggregates and Their Contribution to Aggregate Stability in Paddy Soils. Eurasian Soil Sc. (2024). https://doi.org/10.1134/S1064229323603384

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1064229323603384

Keywords:

Navigation