Skip to main content
Log in

Continuous and Periodical Effects of Smoke from Crop Residue Combustion on Soil Enzymatic Activity

  • SOIL BIOLOGY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Wildfires result in the emission of large volumes of toxic smoke, which is transported hundreds of kilometers away from the fires and can have an adverse impact on soil, biota, and humans. A series of modelling experiments on pyrogenic fumigation of soil has been carried out to assess the effects of gaseous products of wildfires on soil biochemical parameters. The effects of continuous exposure to gaseous substances and periodical, repetitive effects of smoke exposure on soil have been determined. The results have been compared with a single intense smoke exposure. It was found that pyrogenic impact significantly affected the enzymatic activity of ordinary chernozem. The degree of influence depended on the duration and periodicity of smoke exposure. In all experiments, enzymes of oxidoreductase class (catalase, peroxidase, polyphenol oxidase) were more sensitive to fumigation than invertase from hydrolase class. High concentrations of toxic gases were the cause of suppressed enzymatic activity of soils. The following concentrations exceeded the maximum permissible concentrations for atmospheric air: CO 714 times, phenol (hydroxybenzene) 441 times, acetaldehyde 24100 times, formaldehyde 190 times. Accumulation of polycyclic aromatic hydrocarbons (PAHs) in soil after fumigation was revealed, the total content of PAHs was 377 ng/g. The highest values were recorded for naphthalene, where the concentration was 4.4 times higher than the maximum permissible concentration and phenanthrene, 2.8 times higher than the maximum permissible concentration. It has been found that 60-min intensive smoke affects the soil to a lesser extent than continuous and periodical ones. Indices of enzymatic activity of chernozem after such fumigation decreased by 15–33% depending on the enzyme, and after continuous and periodical by 41–84 and 31–78%, respectively. The obtained data indicated a significant effect of smoke on the enzymatic activity of soils under continuous and periodical exposure to gaseous products of combustion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. R. M. Aseeva, B. B. Serkov, and A. B. Sivenkov, “Combustion and fire hazard of wood,” Pozharovzryvoopasnost Veshchestv Mater., No. 21, 19–32 (2012).

  2. L. N. Berdnikova, “The effect of dangerous and harmful factors of forest fires on the environment,” in Safety and Ecology of Transport and Technological Means (2019), pp. 47–55 [in Russian].

  3. Bioindication of Pollutions of Terrestrial Ecosystems, Ed. by R. Shubert (Mir, Moscow, 1988) [in Russian].

  4. L. M. Burlakova, G. G. Morkovkin, Yu. S. Anan’eva, S. I. Zavalishin, and V. A. Kamenskii, “The influence of forest fires on the properties of podzolic soils (on the example of the Khanty-Mansiysk Autonomous Okrug),” Lesn. Vestn., No. 2, 66–71 (2002).

  5. V. A. Vokina, M. A. Novikov, A. N. Alekseenko, L. M. Sosedova, E. A. Kapustina, E. S. Bogomolova, and T. A. Elfimova, “Experimental estimation of the influence of forest fire smoke on the reproductive function of small mammals and their offspring,” Izv. Irkutsk. Gos. Univ. Ser. Biol. Ekol. 29, 88–98 (2019). https://doi.org/10.26516/2073-3372.2019.29.88

    Article  Google Scholar 

  6. E. V. Dadenko, T. V. Denisova, K. Sh. Kazeev, and S. I. Kolesnikov, “Estimating the applicability of enzymatic activity indicators in biodiagnostics and soil monitoring,” Povolzh. Ekol. Zh., No. 4, 385–393 (2013).

  7. K. Sh. Kazeev, S. I. Kolesnikov, Yu. V. Akimenko, and E. V. Dadenko, Methods for Diagnosing Terrestrial Ecosystems (Izd. Yuzhn. Fed. Univ., Rostov-on-Don, 2016) [in Russian].

    Google Scholar 

  8. E. I. Novoselova and O. O. Volkova, “The effect of heavy metals on the activity of catalase in different types of soils,” Izv. Orenburg. Gos. Agrar. Univ., No. 2, 190–193 (2017).

  9. S. N. Borisenko and S. N. Sushkova, RF Patent No. 125490, Byull. No. 6 (2012).

  10. L. P. Volkotrub and A. V. Baushev, RF Patent No. 2018110, Byull. No. 17 (1994).

  11. S. I. Kolesnikov, S. N. Sushkova, T. M. Minkina, and S. S. Mandzhieva, RF Patent No. 2485109 (2013).

  12. Yu. S. Povolotskaya, “An overview of soil enzymes,” Mezhdunar. Zh. Gumanitarnykh Est. Nauk, No. 1, 21–23 (2020). https://doi.org/10.24411/2500-1000-2020-10005

  13. V. D. Prikhodko, K. Sh. Kazeev, V. V. Vilkova, M. S. Nizhelskiy, and S. I. Kolesnikov, “Changes in enzyme activity in postpyrogenic soils (physical model experiment),” Eurasian Soil Sci. 56 (1), 101–109 (2023). https://doi.org/10.1134/S1064229322601640

    Article  CAS  Google Scholar 

  14. E. G. Semoutnikova, G. I. Gorchakov, S. A. Sitnov, V. M. Kopeikin, A. V. Karpov, I. A. Gorchakova, T. Ya. Ponomareva, A. A. Isakov, R. A. Gushchin, O. I. Datsenko, G. A. Kurbatov, and G. A. Kuznetsov, “Siberian smoke haze over European territory of Russia in July 2016: atmospheric pollution and radiative effects,” Atmos. Oceanic Opt. 31 (2), 171–180 (2018). https://doi.org/10.1134/S1024856018020124

    Article  CAS  Google Scholar 

  15. O. A. Sin’kov and A. A. Pochapskii, “Effect of forest fires on the environment,” in Current Problems of Geotechnics, Ecology and Protection of the Population in Emergency Situations (Beloruss. Nats. Tech. Univ., Minsk, 2017), pp. 101–103 [in Russian].

    Google Scholar 

  16. S. N. Sushkova, Doctoral Dissertation in Biology (Rostov-on-Don, 2022).

  17. T. V. Fufaeva and N. A. Kazakova, “Estimation of the effect of different doses of formaldehyde and phenol on microorganisms of leached chernozem,” Austrian J. Tech. Nat. Sci., No. 5, 22–27 (2014).

  18. F. Kh. Khaziev, System-Ecological Analysis of Soil Enzymatic Activity (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  19. Yu. I. Cheverdin, A. N. Ryabtsev, T. V. Titova, V. A. Bespalov, A. Yu. Cheverdin, and S. V. Saprykin, “Scientific substantiation and relationship of agrophysical parameters with effective soil fertility,” in State of Soils in the Central Chernozem Region of Russia and the Problems of Reproducing Their Fertility (Istoki, Voronezh, 2015), pp. 56–61 [in Russian].

    Google Scholar 

  20. M. Alkio, T. M. Tabuchi, X. Wang, and A. Colon-Carmona, “Stress responses to polycyclic aromatic hydrocarbons in Arabidopsis include growth inhibition and hypersensitive response–like symptoms,” J. Exp. Bot. 56 (421), 2983–2994 (2005). https://doi.org/10.1093/jxb/eri295

    Article  CAS  Google Scholar 

  21. V. Andreoni and L. Gianfreda, “Bioremediation and monitoring of aromatic–polluted habitats,” Appl. Microbiol. Biotechnol. 76 (2), 287–308 (2007). https://doi.org/10.1007/s00253-007-1018-5

    Article  CAS  Google Scholar 

  22. P. Artaxo, J. V. Martins, M. A. Yamasoe, A. S. Procópio, T. M. Pauliquevis, M. O. Andreae, P. Guyon, L. V. Gatti, and A. M. Cordova, “Leal physical and chemical properties of aerosols in the wet and dry seasons in Rondônia, Amazonia,” J. Geophys. Res. 107, 8081 (2002). https://doi.org/10.1029/2001JD000666

    Article  CAS  Google Scholar 

  23. B. A. M. Bandowe, N. Shukurov, S. Leimer, M. Kersten, Y. Steinberger, and W. Wilcke, “Polycyclic aromatic hydrocarbons (PAHs) in soils of an industrial area in semi-arid Uzbekistan: spatial distribution, relationship with trace metals and risk assessment,” Environ. Geochem. Health 43, 4847–4861 (2021). https://doi.org/10.1007/s10653-021-00974-3

    Article  CAS  Google Scholar 

  24. V. G. Bondur, O. S. Voronova, K. A. Gordo, and A. L. Zima, “Satellite monitoring of the variability of wildfire areas and emissions of harmful gas components into the atmosphere for various regions of Russia over a 20-year period,” Dokl. Earth Sci. 500 (2), 890–894 (2021). https://doi.org/10.1134/S1028334X21100044

    Article  CAS  Google Scholar 

  25. A. Borowik, J. Wyszkowska, and M. Wyszkowski, “Resistance of aerobic microorganisms and soil enzyme response to soil contamination with Ekodiesel Ultra fuel,” Environ. Sci. Pollut. Res. 24 (31), 24346–24363 (2017). https://doi.org/10.1007/s11356-017-0076-1

    Article  CAS  Google Scholar 

  26. R. G. Burns, “Enzyme activity in soil: location and a possible role in microbial ecology,” Soil Biol. Biochem. 14, 423–427 (1982). https://doi.org/10.1016/0038-0717(82)90099-2

    Article  CAS  Google Scholar 

  27. W. E. Cascio, “Wildland fire smoke and human health,” Sci. Total Environ. 624, 586–595 (2018). https://doi.org/10.1016/j.scitotenv.2017.12.086

    Article  CAS  Google Scholar 

  28. Canadian Environmental Quality Guidelines (Canadian Council of Ministers of the Environment, Winnipeg, 2020).

  29. T. Chen, X. Liu, X. Zhang, X. Chen, K. Tao, and X. Hu, “Effect of alkyl polyglucoside and nitrilotriacetic acid combined application on lead/pyrene bioavailability and dehydrogenase activity in co–contaminated soils,” Chemosphere 154, 515–520 (2016). https://doi.org/10.1016/j.chemosphere.2016.03.127

    Article  CAS  Google Scholar 

  30. M. T. Chuang, J. S. Fu, N. H. Lin, C. T. Lee, Y. Gao, S. H. Wang, G. R. Sheu, et al., “Simulating the transport and chemical evolution of biomass burning pollutants originating from Southeast Asia during 7-SEAS/2010 Dongsha experiment,” Atmos. Environ. 112, 294–305 (2015). https://doi.org/10.1016/j.atmosenv.2015.04.055

    Article  CAS  Google Scholar 

  31. L. Collins, R. A. Bradstock, H. Clarke, M. F. Clarke, R. H. Nolan, and T. D. Penman, “The 2019/2020 mega-fires exposed Australian ecosystems to an unprecedented extent of high-severity fire,” Environ. Res. Lett. 16 (4), 044029 (2021). https://doi.org/10.1088/1748-9326/abeb9e

    Article  Google Scholar 

  32. M. F. Cotrufo, J. L. Soong, A. J. Horton, E. E. Campbell, M. L. Haddix, D. H. Wall, and W. J. Parton, “Formation of soil organic matter via biochemical and physical pathways of litter mass loss,” Nat. Geosci. 8, 776–779 (2015). https://doi.org/10.1038/NGEO2520

    Article  CAS  Google Scholar 

  33. J. F. de Oliveira-Junior, D. Mendes, W. L. F. Correia Filho, C. A. Silva Junior, G. de Gois, A. M. da Ferraz Rosa Jardim, et al., “Fire foci in South America: Impact and causes, fire hazard and future scenarios,” J. South Am. Earth Sci. 112, (2021). https://doi.org/10.1016/j.jsames.2021.103623

  34. S. W. M. F. Doamba, P. Savadogo, and H. B. Nacro, “Effects of burning on soil macrofauna in a savanna-woodland under different experimental fuel load treatments,” Appl. Soil Ecol. 81, 37–44 (2014). https://doi.org/10.1016/j.apsoil.2014.04.005

    Article  Google Scholar 

  35. X. Dong and J. S. Fu, “Understanding interannual variations of biomass burning from Peninsular Southeast Asia, part I: model evaluation and analysis of systematic bias,” Atmos. Environ. 116, 293–307 (2015). https://doi.org/10.1016/J.ATMOSENV.2015.06.026

    Article  CAS  Google Scholar 

  36. X. Dong and J. S. Fu, “Understanding interannual variations of biomass burning from Peninsular Southeast Asia, part II: variability and different influences in lower and higher atmosphere levels,” Atmos. Environ. 115, 9–18 (2015).

    Article  CAS  Google Scholar 

  37. J. S. Fu, N. C. Hsu, Y. Gao, K. Huang, C. Li, N. H. Lin, and S. C. Tsay, “Evaluating the influences of biomass burning during 2006 BASE-ASIA: a regional chemical transport modeling,” Atmos. Chem. Phys. 12, 3837–3855 (2012). https://doi.org/10.5194/acp-12-3837-2012

    Article  CAS  Google Scholar 

  38. S. Fuzzi, S. Decesari, M. C. Facchini, F. Cavalli, L. Emblico, M. Mircea, M. O. Andreae, I. Trebs, et al., “Overview of the inorganic and organic composition of size-segregated aerosol in Rondônia, Brazil, from the biomass-burning period to the onset of the wet season,” J. Geophys. Res. 112, D01201 (2007). https://doi.org/10.1029/2005JD006741

    Article  CAS  Google Scholar 

  39. F. Gonzalez-Vila, J. Lopez, F. Martin, and J. del Rio, “Determination in soils of PAH produced by combustion of biomass under different conditions,” Fresenius’ J. Anal. Chem. 339, 750–753 (1991). https://doi.org/10.1007/BF00321738

    Article  CAS  Google Scholar 

  40. P. D. Henne and T. J. Hawbaker, “An aridity threshold model of fire sizes and annual area burned in extensively forested ecoregions of the western USA,” Ecol. Model. 477, 110277 (2023). https://doi.org/10.1016/j.ecolmodel.2023.110277

    Article  Google Scholar 

  41. L. Hernández, The Mediterranean Burns: WWF’s Mediterranean Proposal for the Prevention of Rural Fires (WWF, Gland, 2019).

  42. L. Hua and G. Shao, “The progress of operational forest fire monitoring with infrared remote sensing,” J. For. Res. 28, 215–229 (2017). https://doi.org/10.1007/s11676-016-0361-8

    Article  Google Scholar 

  43. K. Huang, J. S. Fu, N. C. Hsu, Y. Gao, X. Dong, S. . Tsay, and Y. F. Lam, “Impact assessment of biomass burning on air quality in Southeast and East Asia during BASE-ASIA,” Atmos. Environ. 78, 291–302 (2013). https://doi.org/10.1016/j.atmosenv.2012.03.048

    Article  CAS  Google Scholar 

  44. K. Sh. Kazeev, M. Yu. Odabashian, A. V. Trushkov, and S. I. Kolesnikov, “Assessment of the influence of pyrogenic factors on the biological properties of chernozems,” Eur. Soil Sci. 53 (11), 1610–1619 (2020). https://doi.org/10.1134/S106422932011006X

    Article  CAS  Google Scholar 

  45. J. Li, B. Huang, Q. Wang, Y. Li, W. Fang, D. Yan, M. Guo, and A. Cao, “Effect of fumigation with chloropicrin on soil bacterial communities and genes encoding key enzymes involved in nitrogen cycling,” Environ. Pollut., 534–542 (2017). https://doi.org/10.1016/j.envpol.2017.03.076

  46. H. Li, W. X. Huang, M. Y. Gao, X. Li, L. Xiang, C. H. Mo, Y. W. Li, Q. Y. Cai, M. H. Wong, and F. Y. Wu, “AM fungi increase uptake of Cd and BDE–209 and activities of dismutase and catalase in amaranth (Amaranthus hypochondriacus L.) in two contaminants spiked soil,” Ecotoxicol. Environ. Saf. 195, 110485 (2020). https://doi.org/10.1016/j.ecoenv.2020.110485

    Article  CAS  Google Scholar 

  47. N. H. Lin, S. C. Tsay, H. B. Maring, M. C. Yen, G. R. Sheu, S. H. Wang, K. H. Chi, M. T. Chuang, C. F. Ou-Yang, et al., “An overview of regional experiments on biomass burning aerosols and related pollutants in Southeast Asia: from BASE-ASIA and the Dongsha Experiment to 7-SEAS,” Atmos. Environ. 78, 1–19 (2013).

    Article  CAS  Google Scholar 

  48. D. B. Lindenmayer and C. Taylor, “New spatial analyses of Australian wildfires highlight the need for new fire, resource, and conservation policies,” Proc. Natl. Acad. Sci. U. S. A. 117 (22), 12481–12485 (2020). https://doi.org/10.1073/pnas.2002269117

    Article  CAS  Google Scholar 

  49. A. Lipińska, J. Kucharski, and J. Wyszkowska, “The effect of polycyclic aromatic hydrocarbons on the structure of organotrophic bacteria and dehydrogenase activity in soil,” Polycyclic Aromat. Compd. 34 (1), 35–53 (2014). https://doi.org/10.1080/10406638.2013.844175

    Article  CAS  Google Scholar 

  50. R. Liu, N. Xiao, S. Wei, L. Zhao, and J. An, “Rhizosphere effects of PAH–contaminated soil phytoremediation using a special plant named Fire Phoenix,” Sci. Total Environ. 473, 350–358 (2014). https://doi.org/10.1016/j.scitotenv.2013.12.027

    Article  CAS  Google Scholar 

  51. Y. Liu, S. Goodrick, and W. Heilman, “Wildland fire emissions, carbon, and climate: Wild-fire-climate interactions,” For. Ecol. Manage. 317, 80–96 (2014). https://doi.org/10.1016/j.foreco.2013.02.020

    Article  Google Scholar 

  52. Q. Y. Liu, Y. H. Wu, Y. Z. Zhou, X. Y. Li, S. H. Yang, Y. X. Chen, Y. J. Qu, and M. Jin, “A novel method to analyze the spatial distribution and potential sources of pollutant combinations in the soil of Beijing urban parks,” Environ. Pollut. 284, (2021). https://doi.org/10.1016/J.ENVPOL.2021.117191

  53. Y. Mao, L. Zhang, Y. Wang, L. Yang, Y. Yin, X. Su, Y. Liu, H. Pang, J. Xu, Y. Hu, and X. Shen, “Effects of polycyclic aromatic hydrocarbons (PAHs) from different sources on soil enzymes and microorganisms of Malus prunifolia var. Ringo,” Arch. Agron. Soil Sci., 1–15 (2020).

  54. O. V. Masyagina, “Carbon dioxide emissions and vegetation recovery in fire-affected forest ecosystems of Siberia: recent local estimations,” Cur. Opin. Environ. Sci. Health 23, 100283 (2021). https://doi.org/10.1016/j.coesh.2021.100283

    Article  Google Scholar 

  55. L. A. Milton and A. R. White, “The potential impact of bushfire smoke on brain health,” Neurochem. Int. 139, 104796 (2020). https://doi.org/10.1016/j.neuint.2020.104796

    Article  CAS  Google Scholar 

  56. D. Nakajima, S. Nagame, H. Kuramochi, K. Sugita, S. Kageyama, T. Shiozaki, T. Takemura, F. Shiraishi, and S. Goto, “Polycyclic aromatic hydrocarbon generation behavior in the process of carbonization of wood,” Bull. Environ. Contam. Toxicol. 79, 221–225 (2007). https://doi.org/10.1007/S00128-007-9177-8

    Article  CAS  Google Scholar 

  57. L. Nicola, E. R. Turco, D. Albanese, C. Donati, M. Thalheimer, M. Pindo, H. Insam, D. Cavalieri, and I. Pertot, “Fumigation with dazomet modifies soil microbiota in apple orchards affected by replant disease,” Appl. Soil Ecol. 113, 71–79 (2017). https://doi.org/10.1016/J.APSOIL.2017.02.002

    Article  Google Scholar 

  58. M. S. Nizhelskiy, K. Sh. Kazeev, V. V. Vilkova, and S. I. Kolesnikov, “Inhibition of enzymatic activity of ordinary chernozem by gaseous products of plant matter combustion,” Eur. Soil Sci. 55 (6), 802–809 (2022). https://doi.org/10.1134/S1064229322060096

    Article  CAS  Google Scholar 

  59. S. Pimonsree, P. Vongruang, and S. Sumitsawan, “Modified biomass burning emission in modeling system with fire radiative power: simulation of particulate matter in Mainland Southeast Asia during smog episode,” Atmos. Pollut. Res. 9 (1), 133–145 (2018). https://doi.org/10.1016/j.apr.2017.08.002

    Article  Google Scholar 

  60. Y. M. Polyak, L. G. Bakina, M. V. Chugunova, N. V. Mayachkina, A. O. Gerasimov, and V. M. Bure, “Effect of remediation strategies on biological activity of oil–contaminated soil–A field study,” Int. Biodeterior. Biodegrad. 126, 57–68 (2018). https://doi.org/10.1016/j.ibiod.2017.10.004

    Article  CAS  Google Scholar 

  61. D. Radočaj, M. Jurišić, and M. Gašparović, “A wildfire growth prediction and evaluation approach using Landsat and MODIS data,” J. Environ. Manage. 304, 114351 (2022). https://doi.org/10.1016/j.jenvman.2021.114351

    Article  Google Scholar 

  62. D. Ren, R. Fu, L. M. Leslie, and R. E. Dickinson, “Modeling the mudslide aftermath of the 2007 Southern California Wildfires,” Nat. Hazards 57 (2), 327–343 (2011). https://doi.org/10.1007/s11069-010-9615-5

    Article  Google Scholar 

  63. J. J. Sharples, G. J. Cary, P. Fox-Hughes, S. Mooney, J. P. Evans, M. S. Fletcher, M. Fromm, F. Grierson, R. McRae, and P. Baker, “Natural hazards in Australia: extreme bushfire,” Clim. Change 139, 85–99 (2016). https://doi.org/10.1007/s10584-016-1811-1

    Article  Google Scholar 

  64. R. L. Sinsabaugh, “Phenol oxidase, peroxidase and organic matter dynamics of soil,” Soil Biol. Biochem. 42, 391–404 (2010). https://doi.org/10.1016/j.soilbio.2009.10.014

    Article  CAS  Google Scholar 

  65. J. Sjöströma and A. Granström, “Human activity and demographics drive the fire regime in a highly developed European boreal region,” Fire Saf. J. 136, 103743 (2023). https://doi.org/10.1016/j.firesaf.2023.103743

    Article  Google Scholar 

  66. L. M. Sosedova, V. A. Vokina, M. A. Novikov, E. S. Andreeva, A. N. Alekseenko, O. M. Zhurba, V. S. Rukavishnikov, and I. V. Kudaeva, “Reproductive function of male rats and motor activity of their offspring in fire emissions modeling,” Bull. Exp. Biol. Med. 172 (4), 472–477 (2022). https://doi.org/10.1007/s10517-022-05416-3

    Article  CAS  Google Scholar 

  67. M. Štursová and P. Baldrian, “Effects of soil properties and management on the activity of soil organic matter transforming enzymes and the quantification of soil–bound and free activity,” Plant Soil 338 (1), 99–110 (2011). https://doi.org/10.1007/s11104-010-0296-3

    Article  CAS  Google Scholar 

  68. S. N. Sushkova, T. Minkina, I. Deryabkina (Turina), S. Mandzhieva, I. Zamulina, T. Bauer, G. Vasilyeva, E. Antonenko, and V. Rajput, “Influence of PAH contamination on soil ecological status,” J. Soils Sediments 18 (6), 2368–2378 (2018). https://doi.org/10.1007/s11368-017-1755-8

    Article  CAS  Google Scholar 

  69. A. B. Swengel, “A literature review of insect responses to fire, compared to other conservation managements of open habitat,” Biodiversity Conserv. 10, 1141–1169 (2001). https://doi.org/10.1023/A:1016683807033

    Article  Google Scholar 

  70. R. Tate, Microbiology and Enzymology of Carbon and Nitrogen Cycling (2002). https://doi.org/10.1201/9780203904039.ch8

  71. H. Toberman, C. D. Evans, C. Freeman, N. Fenner, M. White, B. A. Emmett, and R. R. E. Artz, “Summer drought effects upon soil and litter extracellular phenol oxidase activity and soluble carbon release in an upland Calluna heathland,” Soil Biol. Biochem. 40, 1519–1532 (2008). https://doi.org/10.1007/978-3-642-14225-3_3

    Article  CAS  Google Scholar 

  72. E. B. Utobo and L. Tewari, “Soil enzymes as bioindicators of soil ecosystem status,” Appl. Ecol. Environ. Res. 13 (1), 147–168 (2015). https://doi.org/10.15666/ap/1301_147169

    Article  Google Scholar 

  73. X. T. Wang, Y. Miao, Y. Zhang, Y. C. Li, M. H. Wu, and G. Yu, “Polycyclic aromatic hydrocarbons (PAHs) in urban soils of the megacity Shanghai: occurrence, source apportionment and potential human health risk,” Sci. Total Environ. 447, 80–89 (2013). https://doi.org/10.1016/j.scitotenv.2012.12.086

    Article  CAS  Google Scholar 

  74. C. Wang, Y. Luo, H. Tan, H. Liu, F. Xu, and H. Xu, “Responsiveness change of biochemistry and micro–ecology in alkaline soil under PAHs contamination with or without heavy metal interaction,” Environ. Pollut. 266, 115296 (2020). https://doi.org/10.1016/j.envpol.2020.115296

    Article  CAS  Google Scholar 

  75. J. Wei, X. Zhang, X. Liu, X. Liang, and X. Chen, “Influence of root components of celery on pyrene bioaccessibility, soil enzymes and microbial communities in pyrene and pyrene–diesel spiked soils,” Sci. Total Environ. 599, 50–57 (2017). https://doi.org/10.1016/j.scitotenv.2017.04.083

    Article  CAS  Google Scholar 

  76. Y. Xu, G. D. Sun, J. H. Jin, Y. Liu, M. Luo, Z. P. Zhong, and Z. P. Liu, “Successful bioremediation of an aged and heavily contaminated soil using a microbial/plant combination strategy,” J. Hazard. Mater. 264, 430–438 (2014). https://doi.org/10.1016/j.jhazmat.2013.10.071

    Article  CAS  Google Scholar 

  77. X. Zhang, X. Liu, S. Liu, F. Liu, L. Chen, G. Xu, C. Zhong, P. Su, and Z. Cao, “Responses of Scirpus triqueter, soil enzymes and microbial community during phytoremediation of pyrene contaminated soil in simulated wetland,” J. Hazard. Mater. 193, 45–51 (2011). https://doi.org/10.1016/j.jhazmat.2011.07.094

    Article  CAS  Google Scholar 

  78. S. Y. Zhang, Q. F. Wang, and S. G. Xie, “Molecular characterization of phenanthrene–degrading methanogenic communities in leachate–contaminated aquifer sediment,” Int. J. Environ. Sci. Technol. 9 (4), 705–712 (2012). https://doi.org/10.1007/s13762-012-0098-7

    Article  CAS  Google Scholar 

  79. D. Zhang, X. Ji, Z. Meng, W. Qi, and K. Qiao, “Effects of fumigation with 1,3-dichloropropene on soil enzyme activities and microbial communities in continuous-cropping soil,” Ecotoxicol. Environ. Saf. 169, 730–736 (2019). https://doi.org/10.1016/j.ecoenv.2018.11.071

    Article  CAS  Google Scholar 

  80. J. Zhu, A. Cao, J. Wu, W. Fang, B. Huang, D. Yan, Q. Wang, and Y. Li, “Effects of chloropicrin fumigation combined with biochar on soil bacterial and fungal communities and Fusarium oxysporum,” Ecotoxicol. Environ. Saf. 220, (2021). https://doi.org/10.1016/j.ecoenv.2021.112414

Download references

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation, project no. FENW-2023-0008, and by leading school of science of the Russian Federation, project no. NSh-449.2022.5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Nizhelskiy.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by T. Chicheva

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nizhelskiy, M.S., Kazeev, K.S., Vilkova, V.V. et al. Continuous and Periodical Effects of Smoke from Crop Residue Combustion on Soil Enzymatic Activity. Eurasian Soil Sc. 57, 623–634 (2024). https://doi.org/10.1134/S1064229323603256

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229323603256

Keywords:

Navigation