Skip to main content
Log in

Microbiome of Supraglacial Systems on the Aldegonda and Bertil Glaciers (Svalbard)

  • SOIL BIOLOGY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Microbial biomass, diversity of culturable bacteria and micromycetes, and the number of functional nitrogen cycle genes in the supraglacial systems of the Aldegonda and Bertil glaciers have been studied. The biomass of microorganisms varies from 2.54 to 722 µg/g substrate. It is shown for the first time that the major part (78.7–99.8%) of microbial biomass in supraglacial objects is represented by fungi rather than by prokaryotes, and the main part (70 to 90%) of the fungal biomass consists of mycelium with the length varying from 6.70 to 537.51 m/g substrate. The counts of prokaryotes vary from 2.4 × 108 to 1.95 × 109 cells/g substrate. The length of actinomycete mycelium falls into the range of 2.6–62.61 m/g substrate. The counts of culturable bacteria and actinomycetes vary from 3.3 × 104 to 1.2 × 106 CFU/g substrate and of micromycetes, from 2.2 × 101 to 1.7 × 104 CFU/g substrate. Bacteria of the genera Arthrobacter, Bacillus, Rhodococcus, Streptomyces and micromycetes of the genera Antarctomyces, Cadophora, Hyphozyma, Teberdinia and Thelebolus are dominants. The micromycetes Antarctomyces psychrotrophicus, Hyphozyma variabilis and Teberdinia hygrophila are found in Svalbard for the first time. The copy number of amoA genes in ammonium-oxidizing bacteria varies from 5.33 × 106 to 4.86 × 109/g substrate; of nitrogen fixation genes nifH, from 9.89 × 107 to 9.81 × 1010/g substrate; and denitrification genes nirK, from 4.82 × 107 to 3.34 × 1010/g substrate. These results indirectly suggest the leading role of fungi in the microbiome of the supraglacial objects in Svalbard and a considerable contribution of prokaryotes to the emission of greenhouse gases there.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. O. A. Belkina and B. R. Mavlyudov, “Mosses on Svalbard glaciers,” Bot. Zh. 96 (5), 582–596 (2011).

    Google Scholar 

  2. E. N. Bubnova and D. A. Nikitin, “Fungi in bottom sediments of the Barents and Kara seas,” Russ. J. Mar. Biol. 43 (5), 400–406 (2017)

    Article  Google Scholar 

  3. D. Yu. Vlasov, I. Yu. Kirtsideli, E. V. Abakumov, Yu. K. Novozhilov, M. S. Zelenskaya, and E. P. Barantsevich, “Anthropogenic invasion of micromycetes into undisturbed ecosystems of the Larsemann Hills oasis (East Antarctica),” Ross. Zh. Biol. Invazii 13 (2), 23–34 (2020).

    Google Scholar 

  4. M. A. Glazovskaya, “Aeolian fine-earth accumulations on glaciers of the Terskey Ala-Too ridge,” Tr. Inst. Geogr. Akad. Nauk SSSR 49, 55–69 (1952).

    Google Scholar 

  5. M. A. Glazovskaya, “Aeolian deposits on the Tien Shan glaciers,” Priroda, No. 2, 90–92 (1954).

    Google Scholar 

  6. A. M. Glushakova, A. V. Kachalkin, and I. Yu. Chernov, “Specific features of the dynamics of epiphytic and soil yeast communities in the thickets of Indian balsam on mucky gley soil,” Eurasian Soil Sci. 44 (8), 886–892 (2011). https://doi.org/10.1134/S1064229311080059

    Article  Google Scholar 

  7. E. P. Zazovskaya, N. S. Mergelov, V. A. Shishkov, A. V. Dolgikh, A. S. Dobryansky, M. P. Lebedeva, S. M. Turchinskaya, and S. V. Goryachkin, “Cryoconites as factors of soil development in conditions of rapid retreat of the Aldegonda glacier, Western Svalbard,” Eurasian Soil Sci. 55 (3), 299–312 (2022). https://doi.org/10.1134/S1064229322030152

    Article  CAS  Google Scholar 

  8. D. G. Zvyagintsev, Methods of Soil Microbiology and Biochemistry (Mosk. Univ., Moscow, 1991) [in Russian].

    Google Scholar 

  9. I. Yu. Kirtsideli, “Micromycetes from soils and grounds of the North-Eastern Earth (Spitsbergen archipelago),” Mikol. Fitopatol. 44 (2), 116–125 (2010).

    Google Scholar 

  10. I. Yu. Kirtsideli, “Microscopic fungi in soils and grounds of Arctic Mountain systems,” Biosfera 8 (1), 63–78 (2016).

    Google Scholar 

  11. I. Yu. Kirtsideli, “Microscopic fungi in the soils of Hayes Island (Franz Josef Land),” Nov. Sist. Nizshikh Rast., No. 49, 151–160 (2015).

  12. I. Yu. Kirtsideli, D. Yu. Vlasov, M. S. Zelenskaya, V. A. Il’yushin, Yu. K. Novozhilov, I. V. Churkina, and E. P. Barantsevich, “Estimation of anthropogenic invasion of microscopic fungi into Arctic ecosystems (Svalbard archipelago),” Gig. Sanit. 99 (2), 145–151 (2020).

    Article  CAS  Google Scholar 

  13. M. V. Korneikova, V. V. Red’kina, V. A. Myazin, N. . Fokina, and R. R. Shalygina, “Microorganisms of soils of the Rybachy Peninsula,” Tr. Kol’sk. Nauchn. Tsentra Ross. Akad. Nauk, No. 10, 108–122 (2019).

    Google Scholar 

  14. G. A. Kochkina, N. E. Ivanushkina, S. G. Karasev, E. Yu. Gavrish, L. V. Gurina, L. I. Evtushenko, E. V. Spirina, E. A. Vorob’eva, D. A. Gilichinskii, and S. M. Ozerskaya, “Survival of micromycetes and actinobacteria under conditions of long-term natural cryopreservation,” Microbiology (Moscow) 70 (3), 356–364 (2001).

    Article  CAS  Google Scholar 

  15. L. V. Lysak, I. A. Maksimova, D. A. Nikitin, A. E. Ivanova, A. G. Kudinova, V. S. Soina, and O. E. Marfenina, “Soil microbial communities of Eastern Antarctica,” Moscow Univ. Biol. Sci. Bull. 73 (3), 104–112 (2018).

    Article  Google Scholar 

  16. L. V. Lysak, I. N. Skvortsova, and T. G. Dobrovolskaya, Methods for Estimating Soil Bacterial Diversity and Identifying Soil Bacteria (Maks-press, Moscow, 2003) [in Russian].

    Google Scholar 

  17. O. E. Marfenina, D. A. Nikitin, and A. E. Ivanova, “The structure of fungal biomass and diversity of cultivated micromycetes in Antarctic soils (progress and Russkaya Stations),” Eurasian Soil Sci. 49 (8), 934–941 (2016). https://doi.org/10.1134/S106422931608007X

    Article  Google Scholar 

  18. N. S. Mergelov, S. V. Goryachkin, E. P. Zazovskaya, D. V. Karelin, D. A. Nikitin, and S. S. Kutuzov, “Supraglacial soils and soil-like bodies: diversity, genesis, functioning (review),” Eurasian Soil Sci. 56 (12), pages 1845–1880 (2023). https://doi.org/10.1134/S1064229323602330

    Article  Google Scholar 

  19. V. D. Migunova and A. V. Kurakov, “Structure of the microbial biomass and trophic groups of nematodes in soddy-podzolic soils of a postagrogenic succession in the southern taiga (Tver oblast),” Eurasian Soil Sci. 47 (5), 453–458 (2014).

    Article  CAS  Google Scholar 

  20. D. A. Nikitin, L. V. Lysak, and D. V. Badmadashiev, “Molecular biological characteristics of soil microbiome in the northern part of the Novaya Zemlya Archipelago,” Eurasian Soil Sci. 55 (8), 1106–1115 (2022). https://doi.org/10.1134/S1064229322080130

    Article  CAS  Google Scholar 

  21. D. A. Nikitin, L. V. Lysak, D. V. Badmadashiev, S. S. Kholod, N. S. Mergelov, A. V. Dolgikh, and S. V. Goryachkin, “Biological activity of soils in the north of the Novaya Zemlya Archipelago: effect of the largest glacial sheet in Russia,” Eurasian Soil Sci. 54 (10), 1496–1516 (2021). https://doi.org/10.1134/S1064229321100082

    Article  CAS  Google Scholar 

  22. D. A. Nikitin, L. V. Lysak, O. V. Kutovaya, and T. A. Gracheva, “Ecological-trophic structure and taxonomic characteristics of the communities of soil microorganisms in the northern part of the Novaya Zemlya Archipelago,” Eurasian Soil Sci. 54 (11), 1689–1704 (2021).

    Article  CAS  Google Scholar 

  23. D. A. Nikitin, L. V. Lysak, N. S. Mergelov, A. V. Dolgikh, E. P. Zazovskaya, and S. V. Goryachkin, “Microbial biomass, carbon stocks, and CO2 emission in soils of Franz Josef Land: high-arctic tundra or polar deserts?,” Eurasian Soil Sci. 53 (4), 467–484 (2020). https://doi.org/10.1134%2FS1064229320040110

    Article  CAS  Google Scholar 

  24. D. A. Nikitin, O. E. Marfenina, A. G. Kudinova, L. V. Lysak, N. S. Mergelov, A. V. Dolgikh, and A. V. Lupachev, “Microbial biomass and biological activity of soils and soil-like bodies in coastal oases of Antarctica,” Eurasian Soil Sci. 50 (9), 1086–1097 (2017). https://doi.org/10.1134/S1064229317070079

    Article  Google Scholar 

  25. D. A. Nikitin, O. E. Marfenina, and I. A. Maksimova, “Using a successional approach to study the species composition of microscopic fungi and the content of fungal biomass in Antarctic soils,” Mikol. Fitopatol. 51 (4), 211–219 (2017).

    Google Scholar 

  26. D. A. Nikitin, M. V. Semenov, A. A. Semikolennykh, I. A. Maksimova, A. V. Kachalkin, and A. E. Ivanova, “Fungal biomass and species diversity of cultivated mycobiota in soils and substrates of Northbrook Island (Franz Josef Land),” Mikol. Fitopatol. 53 (4), 210–222 (2019). https://doi.org/10.1134/S002636481904010X

    Article  Google Scholar 

  27. L. M. Polyanskaya and D. G. Zvyagintsev, “The content and structure of microbial biomass as indicators of the ecological state of soils,” Pochvovedenie, No. 6, 706–714 (2005).

    Google Scholar 

  28. V. M. Semenov, “Functions of carbon in the mineralization-immobilization turnover of nitrogen in soil,” Agrokhimiya, No. 6, 78–96 (2020). https://doi.org/10.31857/S0002188120060101

    Article  Google Scholar 

  29. F. M. Khabibullina, E. G. Kuznetsova, and I. Z. Vaseneva, “Micromycetes in podzolic and bog-podzolic soils in the middle taiga subzone of northeastern European Russia,” Eurasian Soil Sci. 47 (10), 1027–1032 (2014). https://doi.org/10.1134/S1064229314100044

    Article  CAS  Google Scholar 

  30. J. G. Holt, N. R. Krieg, P. H. A. Sneath, J. T. Stanley, and S. T. William, Bergey’s Manual of Determinative Bacteriology (Williams and Wilikins, Baltimore, 1994; Mir, Moscow, 1997).

  31. I. Yu. Chernov, “Latitudinal-zonal and spatial-successional trends in the distribution of yeast fungi,” Zh. Obshch. Biol. 66 (2), 123–135 (2005).

    Google Scholar 

  32. J. Aalto, D. Scherrer, J. Lenoir, A. Guisan, and M. Luoto, “Biogeophysical controls on soil-atmosphere thermal differences: implications on warming Arctic ecosystems,” Environ. Res. Lett. 13 (7), 074003 (2018). https://doi.org/10.1088/1748-9326/aac83e

    Article  Google Scholar 

  33. E. Abakumov, T. Nizamutdinov, and V. Polyakov, “Analysis of the polydispersity of soil-like bodies in glacier environments by the laser light scattering (diffraction) method,” Biol. Commun. 66 (3), 198–209 (2021). https://doi.org/10.21638/spbu03.2021.302

    Article  Google Scholar 

  34. K. Adhikari and A. E. Hartemink, “Linking soils to ecosystem services—a global review,” Geoderma 262, 101–111 (2016). https://doi.org/10.1016/j.geoderma.2015.08.009

    Article  CAS  Google Scholar 

  35. A. M. Anesio and J. Laybourn-Parry, “Glaciers and ice sheets as a biome,” Trends Ecol. Evol. 27 (4), 219–225 (2012). https://doi.org/10.1016/j.tree.2011.09.012

    Article  Google Scholar 

  36. Y. S. Bekku, T. Nakatsubo, A. Kume, and H. Koizumi, “Soil microbial biomass, respiration rate, and temperature dependence on a successional glacier foreland in Ny-Ålesund, Svalbard,” Arct., Antarct., Alp. Res. 36 (4), 395–399 (2004). https://doi.org/10.1657/1523-0430(2004)036[0395:SMBRRA]2.0.CO;2

    Article  Google Scholar 

  37. G. Braker, A. Fesefeldt, and K. P. Witzel, “Development of PCR primer systems for amplification of nitrite reductase genes (nirK and nirS) to detect denitrifying bacteriain environmental samples,” Appl. Environ. Microbiol. 64, 3769–3775 (1998).

    Article  CAS  Google Scholar 

  38. E. N. Bubnova, “Fungal diversity in bottom sediments of the Kara Sea,” Bot. Mar. 53 (6), 595–600 (2010). https://doi.org/10.1515/BOT.2010.063

    Article  Google Scholar 

  39. P. Buzzini, B. Turchetti, and A. Yurkov, “Extremophilic yeasts: the toughest yeasts around?” Yeast 35 (8), 487–497 (2018). https://doi.org/10.1002/yea.3314

    Article  CAS  Google Scholar 

  40. K. Cameron, A. J. Hodson, and M. Osborn, “Carbon and nitrogen biogeochemical cycling potentials of supraglacial cryoconite communities,” Polar Biol. 35, 1375–1393 (2012). https://doi.org/10.1007/s00300-012-1178-3

    Article  Google Scholar 

  41. F. S. Chapin, P. A. Matson, and P. M. Vitousek, “Nutrient cycling,” in Principles of Terrestrial Ecosystem Ecology (2011), pp. 259–296. https://doi.org/10.1007/978-1-4419-9504-9

  42. G. S. De Hoog, E. Gottlich, G. Platas, O. Genilloud, G. Leotta, and J. Van Brummelen, “Evolution, taxonomy and ecology of the genus Thelebolus in Antarctica,” Stud. Mycol. 51, 33 (2004).

    Google Scholar 

  43. N. J. Dix and J. Webster, Fungal Ecology (Springer Science & Business Media, 2012), p. 376.

    Google Scholar 

  44. K. H. Domsch, W. Gams, and T. Anderson, Compendium of Soil Fungi (IHW-Verlag, Eching, 2007).

  45. A. Edwards, A. M. Anesio, S. M. Rassner, B. Sattler, B. Hubbard, W. T. Perkins, M. Youn, and W. G. Gareth, “Possible interactions between bacterial diversity, microbial activity and supraglacial hydrology of cryoconite holes in Svalbard,” ISME J. 51 (1), 150–160 (2011). https://doi.org/10.1038/ismej.2010.100

    Article  Google Scholar 

  46. A. Edwards, B. Douglas, A. Anesio, S. M. Rassner, T. D. Irvine-Fynn, B. Sattler, and G. W. Griffith, “A distinctive fungal community inhabiting cryoconite holes on glaciers in Svalbard,” Fungal Ecol. 6, 168–176 (2013). https://doi.org/10.1016/j.funeco.2012.11.001

    Article  Google Scholar 

  47. S. Flimban, S. E. Oh, J. H. Joo, and K. A. Hussein, “Characterization and identification of cellulose-degrading bacteria isolated from a microbial fuel cell reactor,” Biotechnol. Bioprocess Eng. 24 (4), 622–631 (2019). https://doi.org/10.1007/s12257-019-0089-3

    Article  CAS  Google Scholar 

  48. T. E. Freitag, L. Chang, and J. I. Prosser, “Changes in the community structure and activity of betaproteobacterial ammonia-oxidizing sediment bacteria along a freshwater-marine gradient,” Environ. Microbiol. 8 (4), 684–696 (2006).

    Article  CAS  Google Scholar 

  49. N. Hassan, M. Rafiq, M. Hayat, A. A. Shah, and F. Hasan, “Psychrophilic and psychrotrophic fungi: a comprehensive review,” Rev. Environ. Sci. 15, 147–172 (2016). https://doi.org/10.1007/s11157-016-9395-9

    Article  Google Scholar 

  50. R. W. Hoham and D. Remias, “Snow and glacial algae: a review,” J. Phycol. 56 (2), 264–282 (2020). https://doi.org/10.1111/jpy.12952

    Article  Google Scholar 

  51. D. A. Hutchins, J. K. Jansson, J. V. Remais, V. I. Rich, B. K. Singh, and P. Trivedi, “Climate change microbiology—problems and perspectives,” Nat. Rev. Microbiol. 17 (6), 391–396 (2019). https://doi.org/10.1038/s41579-019-0178-5

    Article  CAS  Google Scholar 

  52. J. F. Imhoff, “New dimensions in microbial ecology—functional genes in studies to unravel the biodiversity and role of functional microbial groups in the environment,” Microorganisms 4 (2), 19 (2016). https://doi.org/10.3390/microorganisms4020019

    Article  Google Scholar 

  53. R. G. Joergensen and C. Emmerling, “Methods for evaluating human impact on soil microorganisms based on their activity, biomass, and diversity in agricultural soils,” J. Plant Nutr. Soil Sci. 169 (3), 295–309 (2006). https://doi.org/10.1002/jpln.200521941

    Article  CAS  Google Scholar 

  54. C. M. Jones and S. Hallin, “Ecological and evolutionary factors under lying global and local assembly of denitrifier communities,” ISME J. 4, 633–641 (2010). https://doi.org/10.1038/ismej.2009.152PMID:2009078549

    Article  Google Scholar 

  55. S. Joshi, A. Bajpai, and B. N. Johri, “Extremophilic fungi at the interface of climate change,” in Fungi Bio-Prospects in Sustainable Agriculture, Environment and Nano-technology (Academic Press, 2021), pp. 1–22. https://doi.org/10.1016/B978-0-12-821925-6.00001-0

  56. L. Kaczmarek, N. Jakubowska, C. G. Sofia, et al., “The microorganisms of cryoconite holes (algae, Archaea, bacteria, cyanobacteria, fungi, and protista): a review,” Polar Rec. 52 (2), 176–203 (2015). https://doi.org/10.1017/S0032247415000637

    Article  Google Scholar 

  57. G. A. Kochkina, N. E. Ivanushkina, A. V. Lupachev, I. P. Starodumova, O. V. Vasilenko, and S. M. Ozerskaya, “Diversity of mycelial fungi in natural and human-affected Antarctic soils,” Polar Biol. 42 (1), 47–64 (2019). https://doi.org/10.1007/s00300-018-2398-y

    Article  Google Scholar 

  58. G. A. Kochkina, S. M. Ozerskaya, N. E. Ivanushkina, N. I. Chigineva, O. V. Vasilenko, E. V. Spirina, and D. A. Gilichinskii, “Fungal diversity in the Antarctic active layer,” J. Microbiol. 83 (1), 94–101 (2014). https://doi.org/10.1134/S002626171402012X

    Article  CAS  Google Scholar 

  59. P. Kotas, H. Šantrůčková, J. Elster, and E. Kaštovská, “Soil microbial biomass, activity and community composition along altitudinal gradients in the High Arctic (Billefjorden, Svalbard),” Biogeosciences 15 (6), 1879 (2018). https://doi.org/10.5194/bg-15-1879-2018

    Article  CAS  Google Scholar 

  60. A. G. Kudinova, M. A. Petrova, A. V. Dolgikh, V. . Soina, L. V. Lysak, and O. A. Maslova, “Taxonomic diversity of bacteria and their filterable forms in the soils of Eastern Antarctica (Larsemann Hills and Bunger Hills),” J. Microbiol. 89 (5), 574–584 (2020). https://doi.org/10.1134/S0026261720050136

    Article  CAS  Google Scholar 

  61. S. Kumar, D. C. Suyal, A. Yadav, Y. Shouche, and R. Goel, “Microbial diversity and soil physiochemical characteristic of higher altitude,” PLoS One 14 (3), e0213844 (2019). https://doi.org/10.1371/journal.pone.0213844

    Article  CAS  Google Scholar 

  62. C. Lang, X. Fettweis, and M. Erpicum, “Stable climate and surface mass balance in Svalbard over 1979–2013 despite the Arctic warming,” The Cryosphere 9 (1), 83–101 (2015). https://doi.org/10.5194/tc-9-83-2015

    Article  Google Scholar 

  63. Y. Li, W. A. Dick, and O. H. Tuovinen, “Fluorescence microscopy for visualization of soil microorganisms—a review,” Biol. Fertil. Soils 39 (5), 301–311 (2004). https://doi.org/10.1007/s00374-004-0722-x

    Article  Google Scholar 

  64. W. Ma, S. Jiang, F. Assemien, M. Qin, B. Ma, and Z. Xie, “Response of microbial functional groups in volved in soil N cycle to P and N fertilization in Tibetanal pine meadows,” Soil Biol. Biochem. 101, 195–206 (2016). https://doi.org/10.1016/j.soilbio.2016.07.023

    Article  CAS  Google Scholar 

  65. B. Malcheva, M. Nustorova, M. Zhiyanski, M. Sokolovska, R. Yaneva, and E. Abakumov, “Diversity and activity of microorganisms in Antarctic polar soils,” One Ecosyst. 5, e51816 (2020). https://doi.org/10.3897/oneeco.5.e51816

    Article  Google Scholar 

  66. R. M. Martínez-Espinosa, “Microorganisms and their metabolic capabilities in the context of the biogeochemical nitrogen cycle at extreme environments,” Int. J. Mol. Sci. 21 (12), 4228 (2020). https://doi.org/10.3390/ijms21124228

    Article  CAS  Google Scholar 

  67. M. Musilova, M. Tranter, J. L. Bamber, N. Takeuchi, and A. M. Anesio, “Experimental evidence that microbial activity lowers the albedo of glaciers,” Geochem. Perspect. Lett. 2, 106–116 (2016). https://doi.org/10.7185/geochemlet.1611

    Article  Google Scholar 

  68. T. Nakatsubo, S. Yoshitake, M. Uchida, M. Uchida, Y. Shibata, and H. Koizumi, “Organic carbon and microbial biomass in a raised beach deposit under terrestrial vegetation in the High Arctic, Ny-Ålesund, Svalbard,” Polar Res. 27 (1), 23–27 (2008). https://doi.org/10.1111/j.1751-8369.2008.00037.x

    Article  Google Scholar 

  69. T. Nizamutdinov, B. Mavlyudov, V. Polyakov, and E. Abakumov, “Sediments from cryoconite holes and dirt cones on the surface of Svalbard glaciers: main chemical and physicochemical properties,” Acta Geochim. 42 (2), 346–359 (2023). https://doi.org/10.1007/s11631-022-00586-3

    Article  CAS  Google Scholar 

  70. F. Pittino, M. Maglio, I. Gandolfi, R. S. Azzoni, G. Diolaiuti, R. Ambrosini, and A. Franzetti, “Bacterial communities of cryoconite holes of a temperate alpine glacier show both seasonal trends and year-to-year variability,” Ann. Glaciol. 59 (77), 1–9 (2018). https://doi.org/10.1017/aog.2018.16

    Article  Google Scholar 

  71. V. Polyakov, E. Zazovskaya, and E. Abakumov, “Molecular composition of humic substances isolated from selected soils and cryconite of the Grønfjorden area, Spitsbergen,” Pol. Polar Res. 40 (2), 105–120 (2019). https://doi.org/10.24425/ppr.2019.128369

    Article  Google Scholar 

  72. L. M. Polyanskaya, D. D. Yumakov, Z. N. Tyugay, and A. L. Stepanov, “Fungi and bacteria in the dark-humus forest soil,” Eurasian Soil Sci. 53 (9), 1255–1259 (2020). https://doi.org/10.1134/S1064229320090124

    Article  Google Scholar 

  73. J. I. Prosser, G. W. Nicol, J. I. Prosser, and G. W. Nicol, “Archaeal and bacterial ammonia-oxidisers in soil: the quest for niche specialisation and differentiation,” Trends Microbiol. 20, 523–531 (2012). https://doi.org/10.1016/j.tim.2012.08.001PMID:22959489

    Article  CAS  Google Scholar 

  74. U. Purkhold, A. Pommerening-Röser, S. Juretschko, M. C. Schmid, H. P. Koops, and M. Wagner, “Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys,” Appl. Environ. Microbiol. 66 (12), 5368 (2000). https://doi.org/10.1128/aem.66.12.5368-5382.2000

    Article  CAS  Google Scholar 

  75. V. Ravolainen, E. M. Soininen, I. S. Jónsdóttir, I. Eischeid, M. Forchhammer, R. van der Wal, Å. Ø. Pedersen, “High Arctic ecosystem states: conceptual models of vegetation change to guide long-term monitoring and research,” Ambio 49 (3), 666–677 (2020). https://doi.org/10.1007/s13280-019-01310-x

    Article  Google Scholar 

  76. K. Regan, B. Stempfhuber, M. Schloter, F. Rasche, D. Prati, L. Philippot, R. S. Boeddinghaus, E. Kandeler, and S. Marhan, “Spatial and temporal dynamics of nitrogen fixing, nitrifying and denitrifying microbes in an unfertilized grassland soil,” Soil Biol. Biochem. 109, 214–226 (2017). https://doi.org/10.1016/j.soilbio.2016.11.01145

    Article  CAS  Google Scholar 

  77. P. Rozwalak, P. Podkowa, J. Buda, P. Niedzielski, S. Kawecki, R. Ambrosini, R. S. Azzoni, et al., “Cryoconite–from minerals and organic matter to bioengineered sediments on glacier’s surfaces,” Sci. Total Environ. 807, 150874 (2022). https://doi.org/10.1016/j.scitotenv.2021.150874

    Article  CAS  Google Scholar 

  78. M. M. Salcher, “Isolation and cultivation of planktonic freshwater microbes is essential for a comprehensive understanding of their ecology,” Aquat. Microb. Ecol. 77 (3), 183–196 (2016). https://doi.org/10.3354/ame01796

    Article  Google Scholar 

  79. T. V. Schuler, J. Kohler, N. Elagina, J. O. M. Hagen, A. J. Hodson, J. A. Jania, et al., “Reconciling Svalbard glacier mass balance,” Front. Earth Sci. 9, 156 (2020). https://doi.org/10.3389/feart.2020.00156

    Article  Google Scholar 

  80. T. Segawa, N. Takeuchi, H. Mori, R. M. Rathnayake, Z. Li, A. Akiyoshi, H. Satoh, and S. Ishii, “Redox stratification within cryoconite granules influences the nitrogen cycle on glaciers,” FEMS Microbiol. Ecol. 96 (11), fiaa199 (2020). https://doi.org/10.1093/femsec/fiaa199

  81. K. A. Seifert and W. Gams, “The genera of Hyphomycetes–2011 update,” Persoonia: Mol. Phylog. Evol. Fungi 27 (1), 119–129 (2011). https://doi.org/10.3767/003158511X617435

    Article  CAS  Google Scholar 

  82. P. Singh and S. M. Singh, “Characterisation of yeasts and filamentous fungi isolated from cryoconite holes of Svalbard, Arctic,” Polar Biol. 35, 575–583 (2012). https://doi.org/10.1007/s00300-011-1103-1

    Article  Google Scholar 

  83. P. Singh, S. M. Singh, R. N. Singh, S. Naik, U. Roy, A. Srivastava, and M. Bolter, “Bacterial communities in ancient permafrost profiles of Svalbard, Arctic,” J. Basic Microbiol. 57 (12), 1018–1036 (2017). https://doi.org/10.1002/jobm.201700061

    Article  CAS  Google Scholar 

  84. M. V. Sogonov, H. J. Schroers, W. Gams, J. Dijksterhuis, and R. C. Summerbell, “The hyphomycete Teberdinia hygrophila gen. nov., sp. nov. and related anamorphs of Pseudeurotium species,” Mycologia 97 (3), 695–709 (2005). https://doi.org/10.1080/15572536.2006.11832799

    Article  CAS  Google Scholar 

  85. M. Stibal, M. Sabacka, and K. Kastova, “Microbial communities on glacier surfaces in Svalbard: impact of physical and chemical properties on abundance and structure of cyanobacteria and algae,” Microb. Ecol. 52 (4), 644–654 (2006). https://doi.org/10.1007/s00248-006-9083-3

    Article  Google Scholar 

  86. N. Takeuchi, “Optical characteristics of cryoconite (surface dust) on glaciers: the relationship between light absorbency and the property of organic matter contained in the cryoconite,” Ann. Glaciol. 34, 409–414 (2002).

    Article  CAS  Google Scholar 

  87. N. Taş, E. Prestat, S. Wang, Y. Wu, C. Ulrich, T. Kneafsey, et al., “Landscape topography structures the soil microbiome in arctic polygonal tundra,” Nat Commun. 9, 777 (2018). https://doi.org/10.1038/s41467-018-03089-zPMID:29472560

    Article  Google Scholar 

  88. M. Tourna, M. Stieglmeier, A. Spang, M. Könneke, A. Schintlmeister, T. Urich, M. Engel, M. Schloter, M. Wagner, A. Richter, and C. Schleper, “Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil,” Proc. Natl. Acad. Sci. U. S. A. 108 (20), 8420–8425 (2011). https://doi.org/10.1073/pnas.1013488108

    Article  Google Scholar 

  89. M. Wang, X. Jiang, W. Wu, Y. Hao, Y. Su, L. Cai, M. Xiang, and X. Liu, “Psychrophilic fungi from the world’s roof. Persoonia,” Mol. Phylogenet. Evol. Fungi 34, 100–112 (2015). https://doi.org/10.3767/003158515X685878

    Article  CAS  Google Scholar 

  90. M. Wang, J. Tian, M. Xiang, and X. Liu, “Living strategy of cold-adapted fungi with the reference to several representative species,” Mycology 8 (3), 178–188 (2017). https://doi.org/10.1080/21501203.2017.1370429

    Article  Google Scholar 

  91. M. L. Wong and J. F. Medrano, “Real-time PCR for mRNA quantitation,” Biotechniques 39 (1), 75–85 (2005). https://doi.org/10.2144/05391RV01

    Article  CAS  Google Scholar 

  92. B. Wouters, A. S. Gardner, and G. Moholdt, “Global glacier mass loss during the GRACE satellite mission (2002-2016),” Front. Earth Sci. 7, 96 (2019). https://doi.org/10.3389/feart.2019.00096

    Article  Google Scholar 

  93. Y. Yang, J. Zhao, Y. Jiang, Y. Hu, M. Zhang, and Z. Zeng, “Response of bacteria harboring nir Sand nir Kgenesto different N fertilization rates in an alkaline northern Chinese soil,” Eur. J. Soil Biol. 82, 1–9 (2017).https://doi.org/10.1016/j.ejsobi.2017.05.006MicrobiomeshiftsduringsoilformationintundraPLO

  94. S. Yoshitake, M. Uchida, H. Koizumi, and T. Nakatsubo, “Carbon and nitrogen limitation of soil microbial respiration in a High Arctic successional glacier foreland near Ny-Ålesund, Svalbard,” Polar Res. 26 (1), 22–30 (2007). https://doi.org/10.1111/j.1751-8369.2007.00001.x

    Article  Google Scholar 

  95. A. Yurkov, “Temporal and geographic patterns in yeast distribution,” in Yeasts in Natural Ecosystems: Ecology (2017), pp. 101–130. https://doi.org/10.1007/978-3-319-61575-2_4

  96. M. K. Zdanowski, A. Bogdanowicz, J. Gawor, R. Gromadka, D. Wolicka, and J. Grzesiak, “Enrichment of cryoconite hole anaerobes: implications for the subglacial microbiome,” Microb. Ecol. 73 (3), 532–538 (2017). https://doi.org/10.1007/s00248-016-0886-6

    Article  CAS  Google Scholar 

  97. T. Zhang, N. F. Wang, H. Y. Liu, Y. Q. Zhang, and L. Y. Yu, “Soil pH is a key determinant of soil fungal community composition in the Ny-Ålesund Region, Svalbard (High Arctic),” Front. Microbiol. 7, 227 (2016). https://doi.org/10.3389/fmicb.2016.00227

    Article  Google Scholar 

  98. A. Zhelezova, T. Chernov, A. Tkhakakhova, N. Xenofontova, M. Semenov, and O. Kutovaya, “Prokaryotic community shifts during soil formation on sands in the tundra zone,” PLoS One 14 (4), e0206777 (2019). https://doi.org/10.1371/journal.pone.0206777

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 20-17-00212: a block of microbiological studies and determination of carbon and nitrogen contents in climatic and soils. Fieldwork was supported by the state funding for the Institute of Geography, Russian Academy of Sciences (studies in Spitsbergen).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Nikitin.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

Additional information

Translated by G. Chirikova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikitin, D.A., Lysak, L.V., Zazovskaya, E.P. et al. Microbiome of Supraglacial Systems on the Aldegonda and Bertil Glaciers (Svalbard). Eurasian Soil Sc. 57, 601–622 (2024). https://doi.org/10.1134/S1064229323603189

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229323603189

Keywords:

Navigation