Skip to main content
Log in

Influence of Spring Burns on the Properties of Humus Horizon of Chernozem in the Southeast of Western Siberia

  • DEGRADATION, REHABILITATION, AND CONSERVATION OF SOILS
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Influence of spring grass fires on the properties of the upper humus horizon of migrational–mycellary chernozem (Haplic Chernozem) has been studied by the example of soils at the Basic Experimental Complex, Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences (Tomsk). A total of 56 samples (5–14 replicates) were collected at the plots burned two months ago, 1, 2, 3, and 11 years ago. A considerably high stability of the controlled soil properties (cation–anion composition of water extract, content of grain-size fractions and mobile compounds of a wide range of elements, total C and N, organic carbon, pH value, basicity of \({\text{HCO}}_{3}^{ - }\)) under pyrogenic impact of spring grass fires has been found. The content of mobile Ca, Mg and Sr, as well as water-soluble Mg2+ and basicity of \({\text{HCO}}_{3}^{ - }\) appear to be informative parameters reflecting a significant pyrogenic impact over the past 11 years. Their content is higher in the soils at recently (0–3 years ago) burnt plots as compared to old-burnt (11 years ago) and unburnt plots. Among the studied parameters, the pH value, the content of mobile Ba and Sr, and the content of grain-size fractions 1–5, 5–10, and 10–50 µm show a low variation coefficient (mainly <20% in all studied subsets of samples); whereas the content of water-soluble ammonium and mobile Li and Zn manifest a high variation coefficient (>70%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

Notes

  1. Aboveground phytomass was collected from the plots of 50 × 50 cm by cutting shoots at the root with scissors, brought to a constant weight at 40°C and weighed, after which they were converted to a square of 1 m2.

  2. The unburned stubble remaining on the soil surface was removed.

REFERENCES

  1. I. M. Gabbasova, T. T. Garipov, M. A. Komissarov, R. R. Suleimanov, Ya. T. Suyundukov, R. F. Khasanova, L. V. Sidorova, A. V. Komissarov, A. R. Suleimanov, and F. I. Nazyrova, “The impact of fires on the properties of steppe soils in the Trans-Ural region,” Eurasian Soil Sci. 52 (12), 1598–1607 (2019). https://doi.org/10.1134/S0032180X19120049

    Article  ADS  CAS  Google Scholar 

  2. I. M. Gabbasova, T. T. Garipov, R. R. Suleimanov, M. A. Komissarov, I. K. Khabirov, L. V. Sidorova, F. I. Nazyrova, Z. G. Prostyakova, and E. Yu. Kotlugalyamova, “The influence of ground fires on the properties and erosion of forest soils in the Southern Urals (Bashkir State Nature Reserve),” Eurasian Soil Sci. 52 (4), 370–379 (2019). https://doi.org/10.1134/S1064229319040070

    Article  ADS  CAS  Google Scholar 

  3. A. P. Geraskina, D. N. Tebenkova, D. V. Ershov, E. V. Ruchinskaya, N. V. Sibirtseva, and N. V. Lukina, “Wildfires as a factor of loss of biodiversity and forest ecosystem functions,” For. Ski. Issues 5 (1), 97 (2022). https://doi.org/10.31509/2658-607x-202251-97

    Article  Google Scholar 

  4. S. N. Gorbov, O. S. Bezuglova, P. N. Skripnikov, and S. A. Tishchenko, “Soluble organic matter in soils of the Rostov agglomeration,” Eurasian Soil Sci. 55 (7), 957–970 (2022). https://doi.org/10.1134/S1064229322070055

    Article  ADS  CAS  Google Scholar 

  5. G. Kh. Dusaeva and O. G. Kalmykova, “Influence of fires on the vegetation cover of Eurasian steppes: literature review,” Byull. Mosk. O–va Ispyt. Prir., Otd. Biol. 126 (2), 25–37 (2021).

    Google Scholar 

  6. A. A. Dymov, Soil Successions in Boreal Forests of the Komi Republic (GEOS, Moscow, 2020). https://doi.org/10.34756/GEOS.2020.10.37828 [in Russian].

  7. P. R. Enchilik and I. N. Semenkov, “Spatial variability of the elemental composition of soils in the catena of the Central Forest Nature Reserve,” Lesovedenie, No. 4, 411–418 (2022). https://doi.org/10.31857/S0024114822030068

    Article  Google Scholar 

  8. K. Sh. Kazeev, M. Yu. Odabashian, A. V. Trushkov, and S. I. Kolesnikov, “Assessment of the influence of pyrogenic factors on the biological properties of chernozems,” Eurasian Soil Sci. 53 (11), 1610–1619 (2020). https://doi.org/10.1134/S106422932011006X

    Article  ADS  CAS  Google Scholar 

  9. N. Yu. Karpukhina, M. M. Karpukhin, V. P. Samsonova, and D. G. Krotov, “Spatial variability of heavy metal content in agrogray soil at the agricultural land scale,” Agrokhimiya, No. 8, 57–65 (2012).

    Google Scholar 

  10. D. G. Krotov and V. P. Samsonova, “Spatial variability in the distribution of particle-size fractions in agrogray soils and agrogray soils with the second humus horizon,” Moscow Univ. Soil Sci. Bull. 64 (1), 17–22 (2009).

    Article  Google Scholar 

  11. A. Yu. Kudryavtsev, “Effect of fires on the ecosystems of the Privolzhskaya Lesostep Nature Reserve,” Stepnoi Byull., Nos. 43–44, 12–16 (2015).

    Google Scholar 

  12. K. A. Kuznetsov, “Soils of Tomsk oblast (preliminary communication),” in Issues of Geography of Siberia (Tomsk, 1949), No. 2, pp. 69–86.

  13. E. L. Loboda, D. P. Kasymov, M. V. Agafontsev, V. V. Reino, E. V. Gordeev, V. A. Tarkanova, P. S. Martynov, K. E. Orlov, K. V. Savin, A. I. Dutov, and Yu. A. Loboda, “The influence of small natural fires on the characteristics of the atmosphere near the combustion source,” Opt. Atmos. Okeana 33 (10), 818–823 (2020). https://doi.org/10.15372/AOO20201011

    Article  Google Scholar 

  14. S. V. Loiko, I. V. Kritskov, O. R. Kulikova, and G. I. Istigechev, “The influence of relief and peasant nature management on the color of humus horizons in the foothill subtaiga of the southeast of Western Siberia. Reflection of bio-, geo-, anthropospheric interactions in soils and soil cover,” in Proceedings of 5th International Scientific Conference Dedicated to the 85th Anniversary of the Department of Soil Science and Soil Ecology at the Tomsk State University (Nats. Issled. Tomsk. Gos. Univ., Tomsk, 2015), pp. 56–61.

  15. G. N. Ogureeva, N. B. Leonova, E. V. Buldakova, N. G. Kadetov, M. V. Arkhipova, I. M. Miklyaeva, M. V. Bocharnikov, S. V. Dudov, E. A. Ignatova, M. S. Ignatov, E. E. Muchnik, G. P. Urbanavichyus, A. K. Danilenko, V. Yu. Rumyantsev, L. G. Emel’yanova, O. A. Leont’eva, A. A. Romanov, and P. A. Konstantinov, Biomes of Russia Scale 1 : 7 500 000 (Vsemirnyi Fond Dikoi Prirody, Moscow, 2018) [in Russian].

    Google Scholar 

  16. M. Pansu and J. Gautheyrou, Handbook of Soil Analysis Mineralogical, Organic and Inorganic Methods (Springer, Derlin, Heidelberg, 2006).

  17. E. G. Pivovarova, “Solving issues of spatial and temporal variation in agrochemical soil properties using information and logical analysis,” Agrokhimiya, No. 8, 77–84 (2006).

    Google Scholar 

  18. I. N. Semenkov, N. S. Kasimov, and E. V. Terskaya, “Lateral differentiation of metal compound forms in soil loamy catenas of the center of the Western Siberian Plain,” Vestn. Mosk. Univ., Ser. 5: Geogr., No. 3, 25–37 (2019).

  19. I. A. Sokolov and V. O. Targulian, “Interaction of soil and environment: soil–memory and soil–moment,” in Study and Development of Natural Environment (Nauka, Moscow, 1976), pp. 150–164.

    Google Scholar 

  20. G. A. Stupakova, A. A. Lapushkina, T. I. Shchipletsova, D. K. Mitrofanov, and O. V. Kholyaeva, “Variability of the content of fertility indicators in reference samples of different soil types,” Plodorodie, No. 5 (128), 11–16 (2022). https://doi.org/10.25680/S19948603.2022.128.03

    Article  Google Scholar 

  21. V. O. Targulian and I. A. Sokolov, “Structural and functional approach to soil: soil–memory and soil–moment,” in Mathematical Modeling in Ecology (Nauka, Moscow, 1978), pp. 17–33.

    Google Scholar 

  22. Theory and Practice of the Chemical Analysis of Soils, Ed. by L. A. Vorob’eva (GEOS, Moscow, 2006) [in Russian].

    Google Scholar 

  23. A. A. Titlyanova and A. D. Sambuu, Succession in Grass Ecosystems (Izd. Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 2016) [in Russian].

    Google Scholar 

  24. V. M. Fridland, Soil Map of the RSFSR. Scale 1 : 2 500 000 (Glavnoe Upravlenie Geodezii i Kartografii, Moscow, 1988).

  25. A. V. Yudina, D. S. Fomin, I. A. Valdes-Korovkin, N. A. Churilin, M. S. Aleksandrova, Yu. A. Golovleva, N. V. Phillipov, I. V. Kovda, A. A. Dymov, and E. Yu. Milanovskiy, “The ways to develop soil textural classification for laser diffraction method,” Eurasian Soil Sci. 53 (11), 1579–1595 (2020). https://doi.org/10.1134/S1064229320110149

    Article  ADS  CAS  Google Scholar 

  26. D. Badia and C. Martí, “Fire and rainfall energy effects on soil erosion and runoff generation in semi-arid forested lands,” Arid Land Res. Manage. 22, 93–108 (2008). https://doi.org/10.1080/15324980801957721

    Article  Google Scholar 

  27. J. A. Carreira, F. X. Niell, and K. Lajtha, “Soil nitrogen availability and nitrification in Mediterranean shrublands of varying fire history and successional stage,” Biogeochemistry 26 (3), 189–209 (1994). https://doi.org/10.1007/BF00002906

    Article  Google Scholar 

  28. N. Fernandez-Anez, A. Krasovskiy, M. Müller, H. Vacik, J. Baetens, E. Hukić, SolomunM. Kapovic, et al., “Current wildland fire patterns and challenges in Europe: a synthesis of national perspectives,” Air, Soil Water Res. 14, (2021). https://doi.org/10.1177/11786221211028185

  29. M. T. Fontúrbel, A. Barreiro, J. A. Vega, A. Martín, E. Jiménez, T. Carballas, C. Fernández, and M. Díaz-Raviña, “Effects of an experimental fire and post-fire stabilization treatments on soil microbial communities,” Geoderma 191, 51–60 (2012). https://doi.org/10.1016/j.geoderma.2012.01.037

    Article  ADS  Google Scholar 

  30. M. Francos, X. Ubeda, P. Pereira, and M. Alcañiz, “Long-term impact of wildfire on soils exposed to different fire severities. A case study in Cadiretes Massif (NE Iberian Peninsula),” Sci. Total Environ. 615 (1), 664–671 (2017). https://doi.org/10.1016/j.scitotenv.2017.09.311

    Article  ADS  CAS  PubMed  Google Scholar 

  31. L. M. Fultz, J. Moore-Kucera, J. Dathe, M. Davinic, G. Perry, D. Wester, D. W. Schwilk, and S. Rideout-Hanzak, “Forest wildfire and grassland prescribed fire effects on soil biogeochemical processes and microbial communities: two case studies in the semi-arid Southwest,” Appl. Soil Ecol. 99, 118–128 (2016). https://doi.org/10.1016/j.apsoil.2015.10.023

    Article  Google Scholar 

  32. L. V. Galaktionova and A. V. Vasilchenko, “Sustainability of soils to fires as a factor of preservation the shape of steppe protected areas,” Nat. Conserv. Res. 4 (2), 98–103 (2019). https://doi.org/10.24189/ncr.2019.041

    Article  Google Scholar 

  33. A. J. P. Granged, L. M. Zavala, A. Jordán, and G. Bárcenas-Moreno, “Post-fire evolution of soil properties and vegetation cover in a Mediterranean heathland after experimental burning: a 3-year study,” Geoderma 164, 85–94 (2011). https://doi.org/10.1016/j.geoderma.2011.05.017

    Article  ADS  Google Scholar 

  34. E. G. Gregorich, M. H. Beare, U. Stoklas, and P. St-Georges, “Biodegradability of soluble organic matter in maize-cropped soils,” Geoderma 113, 237–252 (2003). https://doi.org/10.1016/S0016-7061(02)00363-4

    Article  ADS  CAS  Google Scholar 

  35. A. M. Grishin, A. I. Filkov, E. L. Loboda, V. T. Kuznetsov, D. P. Kasymov, S. M. Andreyuk, A. I. Ivanov, N. D. Stolyarchuk, V. V. Reyno, and A. V. Kozlov, “A field experiment on grass fire effects on wooden constructions and peat layer ignition,” Int. J. Wildland Fire 23 (3), 445–449 (2014). https://doi.org/10.1071/WF12069

    Article  Google Scholar 

  36. I. Hrelja, I. Šestak, D. Delač, P. Pereira, and I. Bogunović, “Soil chemical properties and trace elements after wildfire in Mediterranean Croatia: effect of severity, vegetation type and time-since-fire,” Agronomy 12 (7), 1515 (2022). https://doi.org/10.3390/agronomy12071515

    Article  CAS  Google Scholar 

  37. A. Jillavenkatesa, S. J. Dapkunas, and L.-S. H. Lum, Particle Size Characterization (US Department of Commerce, National Institute of Standards and Technology, Washington, 2001).

    Google Scholar 

  38. E. Loboda, D. Kasymov, M. Agafontsev, V. Tarakanova, P. Martynov, Y. Loboda, K. Orlov, K. Savin, A. Dutov, V. Reyno, and Y. Gordeev, “Effect of small-scale wildfires on the air parameters near the burning centers,” Atmosphere 12 (1), 75 (2021). https://doi.org/10.3390/atmos12010075

    Article  ADS  CAS  Google Scholar 

  39. M. Muñnoz-Rojas, T. E. Erickson, D. Martini, K. W. Dixon, and D. J. Merritt, “Soil physicochemical and microbiological indicators of short, medium and long term post-fire recovery in semi-arid ecosystems,” Ecol. Indic. 63, 14–22 (2016). https://doi.org/10.1016/j.ecolind.2015.11.038

    Article  CAS  Google Scholar 

  40. E. Nghalipo, D. Joubert, H. Throop, and A. Groengroeft, “The effect of fire history on soil nutrients and soil organic carbon in a semi-arid savanna woodland, central Namibia,” Afr. J. Range Forage Sci. 36 (1), 9–16 (2019). https://doi.org/10.2989/10220119.2018.1526825

    Article  Google Scholar 

  41. M. C. Peel, B. L. Finlayson, and T. A. McMahon, “Updated world map of the Köppen-Geiger climate classification,” Hydrol. Earth Syst. Sci. 11 (5), 1633–1644 (2007). https://doi.org/10.5194/hess-11-1633-2007

    Article  ADS  Google Scholar 

  42. P. Pereira, M. Francos, X. Ubeda, and E. C. Brevik, “Fire impacts in European grassland ecosystems,” in Wildfires: Perspectives, Issues and Challenges of the 21st Century (Nova Science Publishers, Hauppauge, 2017), pp. 1–28.

    Google Scholar 

  43. I. N. Semenkov, T. V. Koroleva, A. M. Karpachesky, S. A. Lednev, and A. V. Sharapova, “Short-term changes in chemical properties of topsoil (0–10 cm) after low-intensity fires caused by landings of first stages of space rockets Proton-M in Central Kazakhstan,” IOP Conf. Series: Earth Environ. Sci. 862, 012109 (2021). https://doi.org/10.1088/1755-1315/862/1/012109

  44. I. N. Semenkov and A. I. Yakushev, “Dataset on heavy metal content in background soils of the three gully catchments at Western Siberia,” Data Brief 26, 104496 (2019). https://doi.org/10.1016/j.dib.2019.104496

    Article  PubMed  PubMed Central  Google Scholar 

  45. H. A. Snyman, “Fire and the dynamics of a semi-arid grassland: influence on soil characteristics,” Afr. J. Range Forage Sci. 19, 137–145 (2002). https://doi.org/10.2989/10220110209485786

    Article  Google Scholar 

  46. O. Valkó and B. Deák, “Increasing the potential of prescribed burning for the biodiversity conservation of European grasslands,” Curr. Opin. Environ. Sci. Health 22, 100268 (2021). https://doi.org/10.1016/j.coesh.2021.100268

    Article  Google Scholar 

  47. O. Valkó, B. Deák, T. Magura, P. Török, A. Kelemen, K. Tóth, R. Horváth, D. D. Nagy, Z. Debnár, G. Zsigrai, I. Kapocsi, and B. Tóthmérész, “Supporting biodiversity by prescribed burning in grasslands — a multi-taxa approach,” Sci. Total Environ. 572, 1377–1384 (2016). https://doi.org/10.1016/j.scitotenv.2016.01.184

    Article  ADS  CAS  PubMed  Google Scholar 

  48. L. Wittenberg and P. Pereira, “Fire and soils: measurements, modelling, management and challenges,” Sci. Total Environ. 776, 145964 (2021). https://doi.org/10.1016/j.scitotenv.2021.145964

    Article  ADS  CAS  Google Scholar 

  49. S. Lednev, I. Semenkov, and T. Koroleva, “Comparison on effect of mowing and spring burning on the occurrence of grassland plants in Western Siberia (preliminary results),” E3S Web of Conf. 463, 02017 (2023). https://doi.org/10.1051/e3sconf/202346302017

Download references

ACKNOWLEDGMENTS

Field studies were carried out at the BEC territory of the IAO SB RAS using the equipment of the Center for Collective Use “Atmosphere” with partial financial support from the Russian Ministry of Education and Science (agreement no. 075-15-2021-661). The authors are grateful to V.V. Reino (IOA SB RAS) for assistance in work organization and A.P. Ginzburg (Lomonosov Moscow State University) for sampling and morphological description of soils. Chemical analyses were conducted at the Ecological and Geochemical Center, Faculty of Geography, Lomonosov Moscow State University (physicochemical properties and sample preparation, by A.P. Ginzburg and P.R. Enchilik; chromatography, by L.V. Dobrydneva), Institute of Microelectronic Technology, Russian Academy of Sciences (element composition of soil extract, by the group of V.K. Karandashev) and at the “Chromatography” Center for Shared Use (registration number 3297) on the basis of the Ecoanalytical laboratory of the Institute of Biology, Komi Science Center, the Ural Branch, Russian Academy of Sciences (Ctot and Ntot, by E.A. Tumanova). Water-soluble organic matter was studied in the Smart Urban Nature laboratory at RUDN University (V.I. Vasenev’s group). For selecting the objects of study, the data were provided by the “Geoportal” Center for Shared Use (Lomonosov Moscow State University).

Funding

The study was supported by the Russian Science Foundation, project no. 22-27-00329.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. N. Semenkov.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by O. Eremina

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

The online version contains supplementary materials available for authorized users at https://doi.org/10.1134/S1064229323603062

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semenkov, I.N., Lednev, S.A., Klink, G.V. et al. Influence of Spring Burns on the Properties of Humus Horizon of Chernozem in the Southeast of Western Siberia. Eurasian Soil Sc. 57, 493–501 (2024). https://doi.org/10.1134/S1064229323603062

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229323603062

Keywords:

Navigation