Skip to main content
Log in

Preferential Flow in Soils: Review of Role in Soil Carbon Dynamics, Assessment of Characteristics, and Performance in Ecosystems

  • SOIL PHYSICS
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Rapid and unstable preferential flow has a significant impact on soil carbon cycle. This review aims to explore the effects of preferential flow on the soil carbon cycle and indicate its characteristics and ecological responses in different ecosystems. This study concluded that preferential flow influences soil carbon cycle through various mechanisms, such as facilitating rapid transport of dissolved organic matter, shaping the distribution and aggregation patterns of soil organic carbon, and enhancing soil microbial activity and organic matter decomposition. The characteristics of preferential flow include surrounding characteristics, rapid non-equilibrium infiltration characteristics, fluctuating characteristics, universal characteristics, lateral infiltration characteristics. Those characteristics could also affect the spatial distribution of soil organic carbon. In addition, this review examines the phenomenon of preferential flow in farmland, forest, wetland, desert, and permafrost ecosystems. Finally, we provide insightful perspectives on future research directions, emphasizing the importance of advancing our understanding of preferential flow mechanisms. It also serves as a valuable resource for future research aimed at unraveling the underlying mechanisms of preferential flow and developing effective soil carbon management strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. A. Alaoui, U. Caduff, H. H. Gerke, and R. Weingartner, “Apreferential flow effects on infiltration and runoff in grassland and forest soils,” Vadose Zone J. 10 (1), 367–377 (2011). https://doi.org/10.2136/vzj2010.0076

    Article  Google Scholar 

  2. S. E. Allaire, S. Roulier, and A. J. Cessna, “Quantifying preferential flow in soils: a review of different techniques,” J. Hydrol. 378 (1–2), 179–204 (2009). https://doi.org/10.1016/j.jhydrol.2009.08.013

    Article  Google Scholar 

  3. V. Bailey, A. Smith, M. Tfaily, S. Fansler, and B. Bond-Lamberty, “Differences in soluble organic carbon chemistry in pore waters sampled from different pore size domains,” Soil Biol. Biochem. 107, 133–143 (2017). https://doi.org/10.1016/j.soilbio.2016.11.025

    Article  CAS  Google Scholar 

  4. L. Brussaard, M. M. Pulleman, É. Ouédraogo, A. Mando, and J. Six, “Soil fauna and soil function in the fabric of the food web,” Pedobiologia 50 (6), 447–462 (2007). https://doi.org/10.1016/j.pedobi.2006.10.007

    Article  Google Scholar 

  5. M. Bundt, M. Jäggi, P. Blaser, R. Siegwolf, and F. Hagedorn, “Carbon and nitrogen dynamics in preferential flow paths and matrix of a forest soil,” Soil Sci. Soc. Am. J. 65 (5), 1529–1538 (2001). https://doi.org/10.2136/sssaj2001.6551529x

    Article  CAS  Google Scholar 

  6. M. Bundt, F. Widmer, M. Pesaro, J. Zeyer, and P. Blaser, “Preferential flow paths: biological ‘hot spots’ in soils,” Soil Biol. Biochem. 33 (6), 729–738 (2001). https://doi.org/10.1016/S0038-0717(00)00218-2

    Article  CAS  Google Scholar 

  7. R. E. Casey, M. Taylor, and S. J. Klaine, “Localization of denitrification activity in macropores of a riparian wetland,” Soil Biol. Biochem. 36 (4), 563–569 (2004). https://doi.org/10.1016/j.soilbio.2003.11.003

    Article  CAS  Google Scholar 

  8. A. Chabbi, I. Kögel-Knabner, and C. Rumpel, “Stabilised carbon in subsoil horizons is located in spatially distinct parts of the soil profile,” Soil Biol. Biochem. 41 (2), 256–261 (2009). https://doi.org/10.1016/j.soilbio.2008.10.033

    Article  CAS  Google Scholar 

  9. B. Clothier, S. Green, and M. Deurer, “Preferential flow and transport in soil: progress and prognosis,” Eur. J. Soil Sci. 59 (1), 2–13 (2008).https://doi.org/10.1111/j.1365-2389.2007.00991.x

    Article  Google Scholar 

  10. C. Cote, K. L. Bristow, and P. Ross, “Increasing the efficiency of solute leaching: impacts of flow interruption with drainage of the “preferential flow paths”," J. Contam. Hydrol. 43 (3–4), 191–209 (2000). https://doi.org/10.1016/s0169-7722(00)00087-5

    Article  CAS  Google Scholar 

  11. K. Cui and X. Qin, “Landslide risk assessment of frozen soil slope in Qinghai Tibet Plateau during spring thawing period under the coupling effect of moisture and heat,” Nat. Hazards 115 (3), 2399–2416 (2023). https://doi.org/10.1007/s11069-022-05646-8

    Article  Google Scholar 

  12. T. H. Debieche, T. Bogaard, V. Marc, C. Emblanch, D. Krzeminska, and J. P. Malet, “Hydrological and hydrochemical processes observed during a large-scale infiltration experiment at the Super-Sauze mudslide (France),” Hydrol. Processes 26 (14), 2157–2170 (2012). https://doi.org/10.1002/hyp.7843

    Article  CAS  Google Scholar 

  13. D. A. Devitt and S. D. Smith, “Root channel macropores enhance downward movement of water in a Mojave Desert ecosystem,” J. Arid Environ. 50 (1), 99–108 (2002). https://doi.org/10.1006/jare.2001.0853

    Article  Google Scholar 

  14. X. Duan, C. Ni, J. Chen, and J. Chen, “Study on the preferential flow of red soil erosion in granite slope collapse with high frequency monitoring of water content,” J. Soil Water Conserv. 30, 82–88 (2016). https://doi.org/10.13870/j.cnki.stbcxb.2016.05.014

    Article  Google Scholar 

  15. R. Durst, G. Imfeld, and J. Lange, “Transport of pesticides and artificial tracers in vertical-flow lab-scale wetlands,” Water Resour. Res. 49 (1), 554–564 (2013). https://doi.org/10.1002/wrcr.20080

    Article  Google Scholar 

  16. A. Dymov, “Soils of post-pyrogenic forests,” Eurasian Soil Sci. 56 (Suppl. 1), S84–S113 (2023). https://doi.org/10.1134/S1064229323700217

    Article  CAS  Google Scholar 

  17. M. Flury, H. Flühler, W. A. Jury, and J. Leuenberger, “Susceptibility of soils to preferential flow of water: a field study,” Water Resour. Res. 30 (7), 1945–1954 (1994). https://doi.org/10.1029/94wr00871

    Article  Google Scholar 

  18. S. Franklin, B. Vasilas, and Y. Jin, “More than meets the dye: evaluating preferential flow paths as microbial hotspots,” Vadose Zone J. 18 (1), 1–8 (2019). https://doi.org/10.2136/vzj2019.03.0024

    Article  CAS  Google Scholar 

  19. S. M. Franklin, A. N. Kravchenko, R. Vargas, B. Vasilas, J. J. Fuhrmann, and Y. Jin, “The unexplored role of preferential flow in soil carbon dynamics,” Soil Biol. Biochem. 161, 108398 (2021). https://doi.org/10.1016/j.soilbio.2021.108398

    Article  CAS  Google Scholar 

  20. I. Fuhrmann, S. Maarastawi, J. Neumann, W. Amelung, K. Frindte, C. Knief, E. Lehndorff, R. Wassmann, and J. Siemens, “Preferential flow pathways in paddy rice soils as hot spots for nutrient cycling,” Geoderma 337, 594–606 (2019). https://doi.org/10.1016/j.geoderma.2018.10.011

    Article  CAS  Google Scholar 

  21. F. Garrido, S. Serrano, L. Barrios, J. Uruñuela, and M. Helmhart, “Preferential flow and metal distribution in a contaminated alluvial soil from São Domingos mine (Portugal),” Geoderma 213, 103–114 (2014). https://doi.org/10.1016/j.geoderma.2013.07.034

    Article  CAS  Google Scholar 

  22. K. Gerke, E. Skvortsova, and D. Korost, “Tomographic method of studying soil pore space: Current perspectives and results for some Russian soils,” Eurasian Soil Sci. 45, 700–709 (2012). https://doi.org/10.1134/S1064229312070034

    Article  Google Scholar 

  23. P. F. Germann and K. Beven, “Kinematic wave approximation to infiltration into soils with sorbing macropores,” Water Resour. Res. 21 (7), 990–996 (1985). https://doi.org/10.1029/wr021i007p00990

    Article  Google Scholar 

  24. F. Hagedorn, N. Bruderhofer, A. Ferrari, and P. A. Niklaus, “Tracking litter-derived dissolved organic matter along a soil chronosequence using 14C imaging: biodegradation, physico-chemical retention or preferential flow?,” Soil Biol. Biochem. 88, 333–343 (2015). https://doi.org/10.1016/j.soilbio.2015.06.014

    Article  CAS  Google Scholar 

  25. F. Hagedorn and M. Bundt, “The age of preferential flow paths,” Geoderma 108 (1–2), 119–132 (2002). https://doi.org/10.1016/s0016-7061(02)00129-5

    Article  CAS  Google Scholar 

  26. E. Hangen, U. Buczko, O. Bens, J. Brunotte, and R. Hüttl, “Infiltration patterns into two soils under conventional and conservation tillage: influence of the spatial distribution of plant root structures and soil animal activity,” Soil Tillage Res. 63 (3–4), 181–186 (2002). https://doi.org/10.1016/s0167-1987(01)00234-3

    Article  Google Scholar 

  27. D. R. Hirmas, D. Giménez, A. Nemes, R. Kerry, N. A. Brunsell, and C. J. Wilson, “Climate-induced changes in continental-scale soil macroporosity may intensify water cycle,” Nature 561 (7721), 100–103 (2018). https://doi.org/10.1038/s41586-018-0463-x

    Article  CAS  Google Scholar 

  28. D. T. Hoang, J. Pausch, B. S. Razavi, I. Kuzyakova, C. C. Banfield, and Y. Kuzyakov, “Hotspots of microbial activity induced by earthworm burrows, old root channels, and their combination in subsoil,” Biol. Fertil. Soils 52, 1105–1119 (2016). https://doi.org/10.1007/s00374-016-1148-y

    Article  CAS  Google Scholar 

  29. F. Hou, J. Cheng, and N. Guan, “Investigating the effect of soil cracks on preferential flow using a dye tracing infiltration experiment in karst in Southwest China,” Land Degrad. Dev. 34 (6), 1612–1628 (2023). https://doi.org/10.1002/ldr.4557

    Article  Google Scholar 

  30. L. Jačka, A. Walmsley, M. Kovář, and J. Frouz, “Effects of different tree species on infiltration and preferential flow in soils developing at a clayey spoil heap,” Geoderma 403, 115372 (2021). https://doi.org/10.1016/j.geoderma.2021.115372

    Article  CAS  Google Scholar 

  31. N. Jarvis, “A review of non-equilibrium water flow and solute transport in soil macropores: principles, controlling factors and consequences for water quality,” Eur. J. Soil Sci. 71 (3), 279–302 (2020). https://doi.org/10.1111/ejss.12973

    Article  CAS  Google Scholar 

  32. N. Jarvis, J. Koestel, and M. Larsbo, “Understanding preferential flow in the vadose zone: Recent advances and future prospects,” Vadose Zone J. 15 (12), 1–11 (2016). https://doi.org/10.2136/vzj2016.09.0075

    Article  Google Scholar 

  33. P. Jiang, L. Xiao, X. Wan, T. Yu, Y. Liu, and M. Liu, “Research progress on microbial carbon sequestration in soil: a review,” Eurasian Soil Sci. 55 (10), 1395–1404 (2022). https://doi.org/10.1134/S1064229322100064

    Article  Google Scholar 

  34. X.-j. Jiang, E.-h. Wang, X.-w. Chen, X.-y. Xia, and C.‑t. Shi, “Surrounding characteristics of preferential flow in cultivated typical black soils of Northeast China,” Yingyong Shengtai Xuebao 21 (12) (2010). https://sci-hub.wf/10.13287/j.1001-9332.2010.0444

  35. X.-J. Jiang, S. Zakari, J. Wu, A. K. Singh, C. Chen, X. Zhu, W. Zhang, and W. Liu, “Can complementary preferential flow and non-preferential flow domains contribute to soil water supply for rubber plantation?,” For. Ecol. Manage. 461, 117948 (2020). https://doi.org/10.1016/j.foreco.2020.117948

    Article  Google Scholar 

  36. X. Kan, J. Cheng, X. Hu, F. Zhu, and M. Li, “Effects of grass and forests and the infiltration amount on preferential flow in karst regions of China,” Water 11 (8), 1634 (2019). https://doi.org/10.3390/w11081634

    Article  CAS  Google Scholar 

  37. S. Keleş, “An assessment of hydrological functions of forest ecosystems to support sustainable forest management,” J. Sustainable For. 38 (4), 305–326 (2019). https://doi.org/10.1080/10549811.2018.1547879

    Article  Google Scholar 

  38. J. Kjellin, A. Wörman, H. Johansson, and A. Lindahl, “Controlling factors for water residence time and flow patterns in Ekeby treatment wetland, Sweden,” Adv. Water Resour. 30 (4), 838–850 (2007). https://doi.org/10.1016/j.advwatres.2006.07.002

    Article  Google Scholar 

  39. K.-J. Kung, T. Steenhuis, E. Kladivko, T. Gish, G. Bubenzer, and C. Helling, “Impact of preferential flow on the transport of adsorbing and non-adsorbing tracers,” Soil Sci. Soc. Am. J. 64 (4), 1290–1296 (2000). https://doi.org/10.2136/sssaj2000.6441290x

    Article  CAS  Google Scholar 

  40. C. Lahiri and G. R. Davidson, “Heterogeneous oxygenation of wetland soils with increasing inundation: redox potential, water depth, and preferential flow paths,” Hydrol. Processes 34 (6), 1350–1358 (2020). https://doi.org/10.1002/hyp.13654

    Article  CAS  Google Scholar 

  41. A. Legout, C. Legout, C. Nys, and E. Dambrine, “Preferential flow and slow convective chloride transport through the soil of a forested landscape (Fougères, France),” Geoderma 151 (3–4), 179–190 (2009). https://doi.org/10.1016/j.geoderma.2009.04.002

    Article  CAS  Google Scholar 

  42. J. Letey, “Causes and consequences of fire-induced soil water repellency,” Hydrol. Processes 15 (15), 2867–2875 (2001). https://doi.org/10.1002/hyp.378

    Article  Google Scholar 

  43. B. Li, J. Gao, X. Wang, L. Ma, Q. Cui, and M. Vest, “Effects of biological soil crusts on water infiltration and evaporation Yanchi Ningxia, Maowusu Desert, China,” Int. J. Sediment Res. 31 (4), 311–323 (2016). https://doi.org/10.1016/j.ijsrc.2016.05.005

    Article  CAS  Google Scholar 

  44. J. Li, Q. Chen, Q. Li, C. Zhao, and Y. Feng, “Influence of plants and environmental variables on the diversity of soil microbial communities in the Yellow River Delta Wetland, China,” Chemosphere 274, 129967 (2021). https://doi.org/10.1016/j.chemosphere.2021.129967

    Article  CAS  Google Scholar 

  45. M. Li, J. Yao, R. Yan, and J. Cheng, “Effects of infiltration amounts on preferential flow characteristics and solute transport in the protection forest soil of southwestern China,” Water 13 (9), 1301 (2021). https://doi.org/10.3390/w13091301

    Article  CAS  Google Scholar 

  46. T. Li, M. a. Shao, Y. Jia, X. Jia, and L. Huang, “Small-scale observation on the effects of the burrowing activities of mole crickets on soil erosion and hydrologic processes,” Agric., Ecosyst. Environ. 261, 136–143 (2018). https://doi.org/10.1016/j.agee.2018.04.010

    Article  Google Scholar 

  47. X.-Y. Li, Z.-P. Yang, Y.-T. Li, and H. Lin, “Connecting ecohydrology and hydropedology in desert shrubs: stemflow as a source of preferential flow in soils,” Hydrol. Earth Syst. Sci. 13 (7), 1133–1144 (2009). https://doi.org/10.5194/hess-13-1133-2009

    Article  Google Scholar 

  48. X. R. Li, F. Y. Ma, H. L. Xiao, X. P. Wang, and K. C. Kim, “Long-term effects of revegetation on soil water content of sand dunes in arid region of Northern China,” J. Arid Environ. 57 (1), 1–16 (2004). https://doi.org/10.1016/S0140-1963(03)00089-2

    Article  Google Scholar 

  49. C. M. T. Lins, E. R. de Souza, T. E. M. dos Santos Souza, M. K. S. S. Paulino, D. R. Monteiro, V. S. de Souza Júnior, P. R. M. Dourado, F. E. d. A. R. Junior, Y. J. A. da Silva, and B. Schaffer, “Influence of vegetation cover and rainfall intensity on soil attributes in an area undergoing desertification in Brazil,” Catena 221, 106751 (2023). https://doi.org/10.1016/j.catena.2022.106751

    Article  CAS  Google Scholar 

  50. W. Liu, G. Ma, C. Wang, J. Wang, H. Lu, S. Li, W. Feng, Y. Xie, D. Ma, and G. Kang, “Irrigation and nitrogen regimes promote the use of soil water and nitrate nitrogen from deep soil layers by regulating root growth in wheat,” Front. Plant Sci. 9, 32 (2018). https://doi.org/10.3389/fpls.2018.00032

    Article  Google Scholar 

  51. Z. Luo, J. Niu, L. Zhang, X. Chen, W. Zhang, B. Xie, J. Du, Z. Zhu, S. Wu, and X. Li, “Roots-enhanced preferential flows in deciduous and coniferous Forest soils revealed by dual-tracer experiments,” J. Environ. Qual. 48 (1), 136–146 (2019). https://doi.org/10.2134/jeq2018.03.0091

    Article  CAS  Google Scholar 

  52. E. Marin-Spiotta, O. A. Chadwick, M. Kramer, and M. S. Carbone, “Carbon delivery to deep mineral horizons in Hawaiian rain forest soils,” J. Geophys. Res.: Biogeosci. 116 (G3) (2011). https://doi.org/10.1029/2010JG001587

  53. G. McCarty and J. Angier, presented at the Preferential Flow: Water Movement and Chemical Transport in the Environment (2001) (unpublished).

  54. F. P. Melo, L. Parry, P. H. Brancalion, S. R. Pinto, J. Freitas, A. P. Manhães, P. Meli, G. Ganade, and R. L. Chazdon, “Adding forests to the water–energy–food nexus,” Nat. Sustainability 4 (2), 85–92 (2021). https://doi.org/10.1038/s41893-020-00608-z

    Article  Google Scholar 

  55. G. Miguez-Macho and Y. Fan, “The role of groundwater in the Amazon water cycle: 2. Influence on seasonal soil moisture and evapotranspiration,” J. Geophys. Res.: Atmos. 117 (D15) (2012). https://doi.org/10.1029/2012JD017539

  56. A. A. Mohammed, E. E. Cey, M. Hayashi, M. V. Callaghan, Y. J. Park, K. L. Miller, and S. K. Frey, “Dual-permeability modeling of preferential flow and snowmelt partitioning in frozen soils,” Vadose Zone J. 20 (2), e20101 (2021). https://doi.org/10.1002/vzj2.20101

    Article  CAS  Google Scholar 

  57. A. A. Mohammed, I. Pavlovskii, E. E. Cey, and M. Hayashi, “Effects of preferential flow on snowmelt partitioning and groundwater recharge in frozen soils,” Hydrol. Earth Syst. Sci. 23 (12), 5017–5031 (2019). https://doi.org/10.5194/hess-23-5017-2019

    Article  Google Scholar 

  58. Y. Mori, A. Fujihara, and K. Yamagishi, “Installing artificial macropores in degraded soils to enhance vertical infiltration and increase soil carbon content,” Prog. Earth Planet. Sci. 1 (1), 1–10 (2014). https://doi.org/10.1186/s40645-014-0030-5

    Article  Google Scholar 

  59. P. Munoz, A. Drizo, and W. C. Hession, “Flow patterns of dairy wastewater constructed wetlands in a cold climate,” Water Res. 40 (17), 3209–3218 (2006). https://doi.org/10.1016/j.watres.2006.06.036

    Article  CAS  Google Scholar 

  60. S. Ogawa, P. Baveye, C. W. Boast, J.-Y. Parlange, and T. Steenhuis, “Surface fractal characteristics of preferential flow patterns in field soils: evaluation and effect of image processing,” Geoderma 88 (3–4), 109–136 (1999). https://doi.org/10.1016/s0016-7061(98)00101-3

    Article  Google Scholar 

  61. P. Öhrström, M. Persson, J. Albergel, P. Zante, S. Nasri, R. Berndtsson, and J. Olsson, “Field-scale variation of preferential flow as indicated from dye coverage,” J. Hydrol. 257 (1–4), 164–173 (2002). https://doi.org/10.1016/s0022-1694(01)00537-6

    Article  Google Scholar 

  62. Z. On, L. Jia, H. Jin, X. Jiang, Q. Zhang, and J. Gao, “Macropores and preferential flow and their effects on pollutant migration in soils,” Acta Pedol. Sin. 36 (3), 341–347 (1999). https://doi.org/10.11766/trxb199802240307

    Article  Google Scholar 

  63. F. Preti, E. Guastini, D. Penna, A. Dani, G. Cassiani, J. Boaga, R. Deiana, N. Romano, P. Nasta, and M. Palladino, “Conceptualization of water flow pathways in agricultural terraced landscapes,” Land Degrad. Dev. 29 (3), 651–662 (2018). https://doi.org/10.1002/ldr.2764

    Article  Google Scholar 

  64. J. Radolinski, H. Le, S. S. Hilaire, K. Xia, D. Scott, and R. D. Stewart, “A spectrum of preferential flow alters solute mobility in soils,” Sci. Rep. 12 (1), 4261 (2022). https://doi.org/10.1038/s41598-022-08241-w

    Article  CAS  Google Scholar 

  65. R. Ragab and C. Prudhomme, “Sw—soil and water: climate change and water resources management in arid and semi-arid regions: prospective and challenges for the 21st century,” Biosyst. Eng. 81 (1), 3–34 (2002). https://doi.org/10.1006/bioe.2001.0013

    Article  Google Scholar 

  66. G.-L. Ren, B. Izadi, B. King, and E. Dowding, “Preferential transport of bromide in undisturbed cores under different irrigation methods,” Soil Sci. 161 (4), 214–225 (1996). https://doi.org/10.1097/00010694-199604000-00002

    Article  CAS  Google Scholar 

  67. C. Rumpel and I. Kögel-Knabner, “Deep soil organic matter—a key but poorly understood component of terrestrial C cycle,” Plant Soil 338, 143–158 (2011). https://doi.org/10.1007/s11104-010-0391-5

    Article  CAS  Google Scholar 

  68. C. Rye and K. Smettem, “The effect of water repellent soil surface layers on preferential flow and bare soil evaporation,” Geoderma 289, 142–149 (2017). https://doi.org/10.1016/j.geoderma.2016.11.032

    Article  Google Scholar 

  69. E. Shein, D. Shcheglov, A. Umarova, I. Sokolova, and E. Y. Milanovskii, “Structural status of technogenic soils and the development of preferential water flows,” Eurasian Soil Sci. 42, 636–644 (2009). https://doi.org/10.1134/S1064229309060088

    Article  Google Scholar 

  70. F. Sheng, K. Wang, R. Zhang, and H. Liu, “Modeling the heterogeneous soil water flow and solute transport by two-region-two-stage model,” J. Hydraul. Eng. 46 (4), 433–442 (2015). https://doi.org/10.13243/j.cnki.slxb.2015.04.007

    Article  Google Scholar 

  71. F. Sheng, L. Zhang, and D. Wu, “Review on research theories and observation techniques for preferential flow in unsaturated soil,” Trans. Chin. Soc. Agric. Eng. 32 (6), 1–10 (2016). https://doi.org/10.11975/j.issn.1002-6819.2016.06.001

    Article  Google Scholar 

  72. J. Šimůnek, O. Wendroth, N. Wypler, and M. T. Van Genuchten, “Non-equilibrium water flow characterized by means of upward infiltration experiments,” Eur. J. Soil Sci. 52 (1), 13–24 (2001). https://doi.org/10.1046/j.1365-2389.2001.00361.x

    Article  Google Scholar 

  73. D. Soto-Gómez, P. Pérez-Rodríguez, L. Vazquez Juiz, J. E. López-Periago, and M. Paradelo Perez, “A new method to trace colloid transport pathways in macroporous soils using X-ray computed tomography and fluorescence macrophotography,” Eur. J. Soil Sci. 70 (3), 431–442 (2019). https://doi.org/10.1111/ejss.12783

    Article  Google Scholar 

  74. C. Stumpp and P. Maloszewski, “Quantification of preferential flow and flow heterogeneities in an unsaturated soil planted with different crops using the environmental isotope δ18O,” J. Hydrol. 394 (3–4), 407–415 (2010). https://doi.org/10.1016/j.jhydrol.2010.09.014

    Article  CAS  Google Scholar 

  75. D. Sun, H. Yang, D. Guan, M. Yang, J. Wu, F. Yuan, C. Jin, A. Wang, and Y. Zhang, “The effects of land use change on soil infiltration capacity in China: a meta-analysis,” Sci. Total Environ. 626, 1394–1401 (2018). https://doi.org/10.1016/j.scitotenv.2018.01.104

    Article  CAS  Google Scholar 

  76. K. Taumer, H. Stoffregen, and G. Wessolek, “Seasonal dynamics of preferential flow in a water repellent soil,” Vadose Zone J. 5 (1), 405–411 (2006). https://doi.org/10.2136/vzj2005.0031

    Article  Google Scholar 

  77. G. Van Der Heijden, A. Legout, B. Pollier, C. Bréchet, J. Ranger, and E. Dambrine, “Tracing and modeling preferential flow in a forest soil—potential impact on nutrient leaching,” Geoderma 195, 12–22 (2013). https://doi.org/10.1016/j.geoderma.2012.11.004

    Article  CAS  Google Scholar 

  78. M. Villamizar and C. D. Brown, “A modelling framework to simulate river flow and pesticide loss via preferential flow at the catchment scale,” Catena 149, 120–130 (2017). https://doi.org/10.1016/j.catena.2016.09.009

    Article  Google Scholar 

  79. H. Wang, J. Xin, X. Zheng, M. Li, Y. Fang, and T. Zheng, “Clogging evolution in porous media under the coexistence of suspended particles and bacteria: insights into the mechanisms and implications for groundwater recharge,” J. Hydrol. 582, 124554 (2020). https://doi.org/10.1016/j.jhydrol.2020.124554

    Article  Google Scholar 

  80. Z. Wang, L. Wu, T. Harter, J. Lu, and W. A. Jury, “A field study of unstable preferential flow during soil water redistribution,” Water Resour. Res. 39 (4), (2003). https://doi.org/10.1029/2001wr000903

  81. S. Willkommen, J. Lange, U. Ulrich, M. Pfannerstill, and N. Fohrer, “Field insights into leaching and transformation of pesticides and fluorescent tracers in agricultural soil,” Sci. Total Environ. 751, 141658 (2021). https://doi.org/10.1016/j.scitotenv.2020.141658

    Article  CAS  Google Scholar 

  82. Y. Wu, Y. Zhang, L. Xie, S. Zhao, Y. Liu, and Z. Zhang, “Preferential flow improves root-soil system on a small scale: A case study of two ecotypes of Phragmites communis,” J. Cleaner Prod. 328, 129581 (2021). https://doi.org/10.1016/j.jclepro.2021.129581

    Article  CAS  Google Scholar 

  83. Y. Wu, Y. Zhang, Z. Zhenming, and M. Zhang, “Differences in soil characteristics between preferential and matrix flow areas in wetland plants root zone in the Yellow River Delta,” J. Beijing Norm. Univ.(Nat. Sci.)57 (1), 69–75 (2021). https://doi.org/10.12202/j.0476-0301.2020435

    Article  Google Scholar 

  84. A. Yair, R. Almog, and M. Veste, “Differential hydrological response of biological topsoil crusts along a rainfall gradient in a sandy arid area: Northern Negev desert, Israel,” Catena 87 (3), 326–333 (2011). https://doi.org/10.1016/j.catena.2011.06.015

    Article  Google Scholar 

  85. J.-l. Yan and W.-z. Zhao, “Effects of long-term mechanical compaction on preferential flow in oasis cropland,” Chin. J. Ecol. 38 (5), 1376 (2019). https://doi.org/10.13292/j.1000-4890.201905.001

    Article  Google Scholar 

  86. L. Yang, L. Chen, and W. Wei, “Effects of vegetation restoration on the spatial distribution of soil moisture at the hillslope scale in semi-arid regions,” Catena 124, 138–146 (2015). https://doi.org/10.1016/j.catena.2014.09.014

    Article  Google Scholar 

  87. S.-H. Yao, B. Zhang, and F. Hu, “Soil biophysical controls over rice straw decomposition and sequestration in soil: the effects of drying intensity and frequency of drying and wetting cycles,” Soil Biol. Biochem. 43 (3), 590–599 (2011). https://doi.org/10.1016/j.soilbio.2010.11.027

    Article  CAS  Google Scholar 

  88. J. Yi, Y. Yang, M. Liu, W. Hu, S. Lou, H. Zhang, and D. Zhang, “Characterising macropores and preferential flow of mountainous forest soils with contrasting human disturbances,” Soil Res. 57 (6), 601–614 (2019). https://doi.org/10.1071/sr18198

    Article  CAS  Google Scholar 

  89. J. Zhang, H. Lin, and J. Doolittle, “Soil layering and preferential flow impacts on seasonal changes of GPR signals in two contrasting soils,” Geoderma 213, 560–569 (2014). https://doi.org/10.1016/j.geoderma.2013.08.035

    Article  Google Scholar 

  90. W. Zhang, F. Jiang, and W. Sun, “Investigating colloid-associated transport of cadmium and lead in a clayey soil under preferential flow conditions,” Water Sci. Technol. 84 (9), 2486–2498 (2021). https://doi.org/10.2166/wst.2021.441

    Article  CAS  Google Scholar 

  91. W. Zhang, L. Wang, Z. Tang, and Y. Zhang, “Effects of the root system architecture of Pinus taeda and Phyllostachys edulis on the index of hydrological connectivity in subtropical forest ecosystems,” Forests 13 (12), 2008 (2022). https://doi.org/10.3390/f13122008

    Article  Google Scholar 

  92. Y. Zhang, J. Niu, M. Zhang, Z. Xiao, and W. Zhu, “Interaction between plant roots and soil water flow in response to preferential flow paths in northern China,” Land Degrad. Dev. 28 (2), 648–663 (2017). https://doi.org/10.1002/ldr.2592

    Article  Google Scholar 

  93. Y. Zhang, M. Zhang, J. Niu, and H. Zheng, “The preferential flow of soil: A widespread phenomenon in pedological perspectives,” Eurasian Soil Sci. 49, 661–672 (2016). https://doi.org/10.1134/S1064229316060120

    Article  Google Scholar 

  94. Y. Zhang, W. Zhao, X. Li, A. Jia, and W. Kang, “Contribution of soil macropores to water infiltration across different land use types in a desert–oasis ecoregion,” Land Degrad. Dev. 32 (4), 1751–1760 (2021). https://doi.org/10.1002/ldr.3823

    Article  Google Scholar 

  95. Z. Zhang, H. Zhou, Q. Zhao, H. Lin, and X. Peng, “Characteristics of cracks in two paddy soils and their impacts on preferential flow,” Geoderma 228, 114–121 (2014). https://doi.org/10.1016/j.geoderma.2013.07.026

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the reviewers and editors for their comments and suggestions.

Funding

This work was supported by the National Natural Science Foundation of China (41907007), the Natural Science Foundation of Jiangsu Province (BK20190747).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Yinghu Zhang; investigation, Wenqi Zhang, Lu Wang Jinhong Chen; writing, Wenqi Zhang, review and editing, Yinghu Zhang, Wenqi Zhang; funding acquisition, Yinghu Zhang. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Yinghu Zhang.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Wang, L., Chen, J. et al. Preferential Flow in Soils: Review of Role in Soil Carbon Dynamics, Assessment of Characteristics, and Performance in Ecosystems. Eurasian Soil Sc. 57, 814–825 (2024). https://doi.org/10.1134/S1064229323602548

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229323602548

Keywords:

Navigation