Skip to main content
Log in

Microbiomorphs of Soddy Solodic Planosol and Buried Organic-Accumulative Quasi-Clay Soil of West Siberia

  • MINERALOGY AND MICROMORPHOLOGY OF SOILS
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The pedocomplex of a mesodepression with birch grove amid steppe has been studied in Novosibirsk oblast, West Siberia. This pedocomplex consists if the modern soddy solod soil (Planosol) overlying the buried organo-accumulative quasigleyic soil (Umbrisol). Several peaks of the maximum accumulation of phytoliths are seen in the profile of the soddy solod soil. The largest number of phytoliths is confined to the eluvial horizon. A significant part is represented by phytoliths of steppe grasses and rod-shaped phytoliths of dicotyledonous plants (forbs, legumes). The buried soil went through the steppe stage of development, as indicated by the predominance of phytoliths of steppe grasses, which was then replaced by the meadow-forest stage with an increase in the portion of forest and meadow grasses. The presence of diatom shells has been recorded throughout the entire thickness of the soil profile, including the buried soil. Their accumulation is associated with seasonal inundation of the mesodepression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. D. I. Abramovich, Waters of the Kulunda Steppe (Nauka, Sib. Otd., Novosibirsk, 1960) [in Russian].

  2. E. V. Arinushkina, Soil Chemical Analysis Guide, 2nd Ed., revised and supplemented (Mosk. Univ., Moscow, 1970) [in Russian].

  3. T. V. Aristovskaya and R. S. Kutuzova, “On the microbiological factors of silicon mobilization from sparingly soluble natural compounds,” Pochvovedenie, No. 12, 59–66 (1968).

    Google Scholar 

  4. B. P. Akhtyrtsev, “On the history of the formation of gray forest soils in the Central Russian forest-steppe,” Pochvovedenie, No. 3, 5–18 (1992).

    Google Scholar 

  5. D. A. Gavrilov and S. V Loiko, “Phytoliths of soils of dark coniferous hemiboreal forests in the southeast of Western Siberia,” Din. Okruzh. Sredy Global’nye Izmen. Klim. 1 (3), 41–53 (2016).

    Google Scholar 

  6. A. A. Gol’eva, Phytoliths and Their Informational Role in the Study of Natural and Archaeological Objects (Polteks, Moscow–Syktyvkar–Elista, 2001) [in Russian].

  7. A. A Gol’eva, Microbiomorphic Complexes of Natural and Anthropogenic Landscapes: Genesis, Geography, Informational Role (Izd. LKI, Moscow, 2008a) [in Russian].

    Google Scholar 

  8. A. A Gol’eva, “Microbiomorphic memory of soils,” in Soil Memory: Soils as a Reflection of Biosphere-Geosphere-Anthroposphere Interactions (Izd. LKI, Moscow, 2008b) [in Russian].

    Google Scholar 

  9. GOST (State Standard) 27821-2020: Determination of the Amount of Absorbed Bases using the Kappen Method, 2020.

  10. G. V. Dobrovol’skii and S. A. Shoba, Scanning Electron Microscopy of Soils (Mosk. Gos. Univ., Moscow, 1978) [in Russian].

    Google Scholar 

  11. N. A. Kachinskii, Mechanical and Microaggregate Composition of the Soil, Methods of Its Study (Izd. Akad. Nauk SSSR, Moscow, 1958) [in Russian].

    Google Scholar 

  12. L. L. Shishov, V. D. Tonkonogov, I. I. Lebedeva, and M. I. Gerasimova, Classification and Diagnostics of Russian Soils (Oikumena, Smolensk, 2004) [in Russian].

    Google Scholar 

  13. N. Yu. Lada, “Conditions for the formation of microbiomorphic spectra of steppe lake landscapes of northern Kulunda,” Din. Okruzh. Sredy Global’nye Izmen. Klim. 7 (1), 85–92 (2016).

    Google Scholar 

  14. N. Yu. Lada, Extended Abstract of Candidate’s Dissertation in Biology (Novosibirsk, 2017a).

  15. N. Yu. Lada, “Diagnostics of soils with different economic uses based on phytolith analysis data,” in Problems of Botany in Southern Siberia and Mongolia: Proceedings of 16th International Scientific and Practical Conference (Barnaul, June 5–8, 2017), Ed. by A. I. Shmakov and T. M. Kopytina (Izd. Altai. Gos. Univ., Barnaul, 2017b), pp. 205–208.

  16. N. Yu. Lada and B. A. Smolentsev “Phytolith analysis of light-humus stratozem genesis (the case of the Bagan lakeside territory)”, Vestn. Tomsk. Gos. Univ., Biol., No. 1 (29), 16–27 (2015). https://doi.org/10.17223/19988591/29/2

  17. N. Yu. Lada and D. A. Gavrilov, “Analysis of phytolith composition of the main plant steppe ecosystems of Western Siberia,” Vestn. Tomsk. Gos. Univ., Biol., No. 2 (34), 53–68 (2016).https://doi.org/10.17223/19988591/34/4

  18. Soils of Novosibirsk Oblast, Ed. by R. V. Kovalev (Nauka, Sib. Otd., Novosibirsk, 1966) [in Russian].

  19. O. I. Saprykin, Extended Abstract of Candidate’s Dissertation in Biology (Novosibirsk, 2021).

  20. O. I. Saprykin, G. A. Konarbaeva, and B. A. Smolentsev, “Comparative characteristics of the agrochemical properties of soils in agricultural landscapes with a wedge microrelief,” Agrokhimiya, No. 10, 15–19 (2020).

    Google Scholar 

  21. M. Yu. Solomonova, N. Yu. Speranskaya, M. M. Silant’eva, and N. V. Elesova, “Phytoliths of Northern Altai forests,” Probl. Bot. Yuzhn. Sib. Mong., No. 17, 309–312 (2018).

  22. N. Yu. Speranskaya, M. Yu. Solomonova, and Yu. V. Geinrikh, “Diagnostic forms of phytoliths of meadow and steppe phytocenoses of the Altai krai,” Din. Okruzh. Sredy Global’nye Izmen. Klim. 7 (1 (13)), 148–154 (2016).

    Google Scholar 

  23. N. Yu. Speranskaya, M. Yu. Solomonova, M. M. Silant’eva, Yu. V. Geinrikh, M. S. Blinnikov, “Phytoliths of cereals of Northern Altai,” Ukr. J. Ecol., No. 8 (1), 762–771 (2018).https://doi.org/10.15421/2018_278

  24. I. V. Tyurin, Soil Organic Matter and Its Role in Fertility (Nauka, Moscow, 1965), pp. 190–208 [in Russian].

    Google Scholar 

  25. I. N. Uglanov, Reclaimed Stratum of Soils and Rocks in the South of Western Siberia (Nauka, Sib. Otd., Novosibirsk, 1981) [in Russian].

  26. G. V. Kharitonova, A. S. Manucharov, L. A. Matyushkina, A. S. Stenina, Z. N. Tyugay, N. S. Konovalova, V. S. Komarova, and N. P. Chizhikova, “Biomorph silica in meadow soils of the Mid-Amur lowland,” Moscow Univ. Soil Sci. Bull. 68 (1), 32–40 (2013).

    Article  Google Scholar 

  27. V. A. Khmelev and A. A. Tanasienko, Land Resources of the Novosibirsk Region and Ways of Their Rational Use (Izd. Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 2009) [in Russian].

    Google Scholar 

  28. A. L. Aleksandrovskii, A. A. Gol’eva, and V. S. Gunova “Reconstruction of paleolandscape conditions of the early scythian soils in the Stavropol region,” Eurasian Soil Sci. 30 (5), 461–471 (1997).

    Google Scholar 

  29. M. S. Blinnikov, B. R. Hoffman, and Yu. A. Salova “Modern analog assemblages of phytoliths under various plant communities of the middle Volga and their applicability for archaeological reconstructions,” The Volga River region archaeology 4 (38), 217–234 (2021).https://doi.org/10.24852/pa2021.4.38.217.234

  30. A. A. Gol’eva and A. L. Aleksandrovskii, “The application of phytolith analysis for solving problems of soil genesis and evolution,” Eurasian Soil Sci. 32 (8), 884–891 (1999).

    Google Scholar 

  31. Z. Lisztes-Szabó, S. Kovács, and Á. Pető, “Phytolith analysis of Poa pratensis (Poaceae) leaves,” Turk. J. Bot. 38, 13 (2014).

    Article  Google Scholar 

  32. H. Lu and K-b. Liu, “Phytoliths of common grasses in the coastal environments of southeastern USA,” Estuarine, Coastal Shelf Sci. 58, 587–600 (2003).

    Article  Google Scholar 

  33. K. Neumann, C. A. E. Strömberg, T. Ball, R. M. Albert, L. Vrydaghs, and L. S. Cummings, “International code for phytolith nomenclature (ICPN) 2.0.,” Ann. Bot. 124 (2), 189–199 (2019). https://doi.org/10.1093/aob/mcz064

    Article  Google Scholar 

  34. D. R. Piperno, Phytoliths: A Comprehensive Guide for Archaeologists and Paleoecologists (Alta Mira Press, Lanham, 2006).

    Google Scholar 

  35. V. O. Targulian and T. A. Sokolova, “Soil as a biotic/abiotic natural system: a reactor, memory, and regulator of biospheric interactions,” Eurasian Soil Sci. 29 (1), 30–41 (1996).

    Google Scholar 

  36. M. Y. Solomonova, N. Y. Speranskaya, M. S. Blinnikov, E. Y. Kharitonova, Y. V. Pechatnova, and M. M. Silantieva, “Cyperaceae Juss. and Juncaceae A. Rich ex Kunt. phytoliths of Western Siberia,” Ukr. J. Ecol. 8 (4), 332–334 (2018).

    Google Scholar 

  37. L. A. Wallis, “Environmental history of northwest Australia based on phytolith analysis at Carpenter’s Gap 1,” Quat. Int. 83–85, 103–117 (2001).

    Article  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation, project no. 121031700309-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Yu. Lada.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by D. Konyushkov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lada, N.Y., Mironycheva-Tokareva, N.P. Microbiomorphs of Soddy Solodic Planosol and Buried Organic-Accumulative Quasi-Clay Soil of West Siberia. Eurasian Soil Sc. 56 (Suppl 2), S337–S343 (2023). https://doi.org/10.1134/S1064229323602299

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229323602299

Keywords:

Navigation