Skip to main content
Log in

Thermal Stability of Soil Organic Matter in Postagrogenic Luvic Phaeozems

  • DOKUCHAEV YOUTH READINGS
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The efficiency of carbon sequestration in abandoned soils depends on the stability of accumulated organic matter. The resistance of soil organic matter (SOM) of postagrogenic dark gray forest soils (Luvic Phaeozems (Aric, Cutanic, Densic)) in the subtaiga deciduous forest to microbial decomposition was estimated by soil respiratory activity. The thermal stability of SOM was determined by thermogravimetry and differential scanning calorimetry methods. Based on the increase of SOM thermal stability according to the rising temperature, four pools were separated in the SOM: thermally labile (thermal oxidation occurs at temperatures from 200 to 380°С), stable (380–460°С), overstable (460–520°С), and persistent (520–600°С). The thermally labile pool predominated in the SOM (58% on average) in the soil layer 0–30 cm. As soil depth increased, total portion of thermally stable pools (380–600°C) in the SOM increased and accounted for 63% on average at the depth of 70–100 cm. The temperature, at which thermal oxidation of half of the organic matter is reached (T50), was the indicator of SOM thermal stability. In the soil layer 0–30 cm T50 equaled to 362 ± 4°С, and in the soil layer 30–100 cm to 408 ± 4°С, and this reflected the increase with depth of the portion of thermally stable pools in the SOM. It was found that respiratory activity of abandoned soils decreased, as thermal stability, estimated by the ratio of the resistant pool to the labile pool, increased in SOM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. L. I. Anufrieva, Ecological and Geological Mapping on a Scale of 1 : 200 000. Sheets O-41-XXIV, XXX. Report of the Eastern Surveying Ecological-Geological Party for 1993–2001: Geological Report (Tyumen, 2001).

  2. L. N. Karetin, Soils of Tyumen Oblast (Nauka, Novosibirsk, 1990) [in Russian].

    Google Scholar 

  3. I. N. Kurganova, V. M. Telesnina, V. O. Lopes de Gerenyu, V. I. Lichko, and E. I. Karavanova, “The Dynamics of Carbon Pools and Biological Activity of Retic Albic Podzols in Southern Taiga during the Postagrogenic Evolution,” Eurasian Soil Sci. 54 (3), 337–351 (2021). https://doi.org/10.1134/S1064229321030108

    Article  Google Scholar 

  4. Soil Map of the South of Tyumen Oblast, Scale 1 : 300 000, Ed. by G. V. Romanova (Committee on Geodesy and Cartography of the Russian Federation, Moscow, 1992).

  5. V. M. Semenov, A. S. Tulina, N. A. Semenova, and L. A. Ivannikova, “Humification and nonhumification pathways of the organic matter stabilization in soil: a review,” Eurasian Soil Sci. 46 (4), 355–368 (2013). https://doi.org/10.1134/S106422931304011X

    Article  Google Scholar 

  6. D. A. Sokolov, I. I. Dmitrevskaya, N. B. Pautova, T. N. Lebedeva, V. A. Chernikov, and V. M. Semenov, “A study of soil organic matter stability using derivatography and long-term incubation methods,” Eurasian Soil Sci. 54 (4), 487–498 (2021). https://doi.org/10.1134/S1064229321040141

    Article  Google Scholar 

  7. Classification and Diagnostics of Russian Soils (Oikumena, Smolensk, 2004) [in Russian].

  8. J. P. E. Anderson and K. H. Domsch, “A physiological method for the quantitative measurement of microbial biomass in soils,” Soil Biol. Biochem. 10 (3), 215–221 (1978). https://doi.org/10.1016/0038-0717(78)90099-8

    Article  Google Scholar 

  9. M. T. Dell’Abate, A. Benedetti, A. Trinchera, and C. Dazzi, “Humic substances along the profile of two Typic Haploxerert,” Geoderma 107 (3–4), 281–296 (2002). https://doi.org/10.1016/S0016-7061(01)00153-7

    Article  Google Scholar 

  10. H. Doležalová-Weissmannová, S. Malý, M. Brtnický, J. Holátko, M. S. Demyan, C. Siewert, D. Tokarski, E. Kameníková, and J. Kučerík, “Practical applications of thermogravimetry in soil science: Part 5. Linking the microbial soil characteristics of grassland and arable soils to thermogravimetry data,” J. Therm. Anal. Calorim. 148 (4), 1599–1611 (2023). https://doi.org/10.1007/s10973-022-11709-6

    Article  Google Scholar 

  11. M. Dorodnikov, A. Fangmeier, and Y. Kuzyakov, “Thermal stability of soil organic matter pools and their δ13C values after C3–C4 vegetation change,” Soil Biol. Biochem. 39 (5), 1173–1180 (2007). https://doi.org/10.1016/j.soilbio.2006.12.025

    Article  Google Scholar 

  12. W. Gao, T. Zhou, and T. Ren, “Conversion from conventional to no tillage alters thermal stability of organic matter in soil aggregates,” Soil Sci. Soc. Am. J. 79 (2), 585–594 (2015). https://doi.org/10.2136/sssaj2014.08.0334

    Article  Google Scholar 

  13. A. S. Grandy, M. S. Strickland, C. L. Lauber, M. A. Bradford, and N. Fierer, “The influence of microbial communities, management, and soil texture on soil organic matter chemistry,” Geoderma 150 (3–4), 278–286 (2009). https://doi.org/10.1016/j.geoderma.2009.02.007

    Article  Google Scholar 

  14. A. Gunina and Y. Kuzyakov, “From energy to (soil organic) matter,” Global Change Biol. 28 (7), 2169–2182 (2022). https://doi.org/10.1111/gcb.16071

    Article  Google Scholar 

  15. IUSS Working Group WRB, World Reference Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th Ed. (International Union of Soil Sciences (IUSS), Vienna, 2022).

  16. I. Kögel-Knabner, “The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter,” Soil Biol. Biochem. 34 (2), 139–162 (2002). https://doi.org/10.1016/S0038-0717(01)00158-4

    Article  Google Scholar 

  17. J. Kučerík, D. Tokarski, M. S. Demyan, I. Merbach, and C. Siewert, “Linking soil organic matter thermal stability with contents of clay, bound water, organic carbon and nitrogen,” Geoderma 316, 38–46 (2018). https://doi.org/10.1016/j.geoderma.2017.12.001

    Article  Google Scholar 

  18. J. Kučerík, A. Čtvrtníčková, and C. Siewert, “Practical application of thermogravimetry in soil science: Part 1. Thermal and biological stability of soils from contrasting regions,” J. Therm. Anal. Calorim. 113 (3), 1103–1111 (2013). https://doi.org/10.1007/s10973-012-2849-6

    Article  Google Scholar 

  19. I. Kühling, G. Broll, and D. Trautz, “Spatio–temporal analysis of agricultural land-use intensity across the Western Siberian grain belt,” Sci. Total Environ. 544, 271–280 (2016). https://doi.org/10.1016/j.scitotenv.2015.11.129

    Article  Google Scholar 

  20. I. Kurganova, V. Lopes de Gerenyu, and J. Six, “Carbon cost of collective farming collapse in Russia,” Global Change Biol. 20 (3), 938–947 (2014). https://doi.org/10.1111/gcb.12379

    Article  Google Scholar 

  21. I. Kurganova, A. Merino, V. Lopes de Gerenyu, N. Barros, O. Kalinina, L. Giani, and Y. Kuzyakov, “Mechanisms of carbon sequestration and stabilization by restoration of arable soils after abandonment: a chronosequence study on Phaeozems and Chernozems,” Geoderma 354, 113882 (2019). https://doi.org/10.1016/j.geoderma.2019.113882

    Article  Google Scholar 

  22. I. N. Kurganova, V. O. Lopes de Gerenyu, J. F. Gallardo Lancho, and C. T. Oehm, “Evaluation of the rates of soil organic matter mineralization in forest ecosystems of temperate continental, mediterranean, and tropical monsoon climates,” Eurasian Soil Sci. 45 (1), 68–79 (2012). https://doi.org/10.1134/S1064229312010085

    Article  Google Scholar 

  23. J. Leifeld and M. von Lützow, “Chemical and microbial activation energies of soil organic matter decomposition,” Biol. Fertil. Soils 50 (1), 147–153 (2014). https://doi.org/10.1007/s00374-013-0822-6

    Article  Google Scholar 

  24. M. v. Lützow, I. Kögel-Knabner, K. Ekschmitt, E. Matzner, G. Guggenberger, B. Marschner, and H. Flessa, “Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions—a review: mechanisms for organic matter stabilization in soils,” Eur. J. Soil Sci. 57 (4), 426–445 (2006). https://doi.org/10.1111/j.1365-2389.2006.00809.x

    Article  Google Scholar 

  25. A. Merino, A. Ferrerio, J. Saldago, M. Fontvrbel, M. Barros, C. Fernández, and J. A. Vega, “Use of thermal analysis and solid–state 13C CP-MAS NMR spectroscopy to diagnose organic matter quality in relation to burn severity in Atlantic soils,” Geoderma 226–227, 376–386 (2014). https://doi.org/10.1016/j.geoderma.2014.03.009

    Article  Google Scholar 

  26. G. A. Miller, R. M. Rees, B. S. Griffiths, B. C. Ball, and J. M. Cloy, “The sensitivity of soil organic carbon pools to land management varies depending on former tillage practices,” Soil Tillage Res. 194, 104299 (2019). https://doi.org/10.1016/j.still.2019.104299

    Article  Google Scholar 

  27. A. F. Plante, J. M. Fernández, M. L. Haddix, J. M. Steinweg, and R. T. Conant, “Biological, chemical and thermal indices of soil organic matter stability in four grassland soils,” Soil Biol. Biochem. 43 (5), 1051–1058 (2011). https://doi.org/10.1016/j.soilbio.2011.01.024

    Article  Google Scholar 

  28. A. F. Plante, J. M. Fernández, and J. Leifeld, “Application of thermal analysis techniques in soil science,” Geoderma 153 (1–2), 1–10 (2009). https://doi.org/10.1016/j.geoderma.2009.08.016

    Article  Google Scholar 

  29. C. Poeplau, A. Don, J. Six, M. Kaiser, D. Benbi, C. Chenu, M. F. Cotrufo, et al., “Isolating organic carbon fractions with varying turnover rates in temperate agricultural soils—a comprehensive method comparison,” Soil Biol. Biochem. 125, 10–26 (2018). https://doi.org/10.1016/j.soilbio.2018.06.025

    Article  Google Scholar 

  30. G. Ranalli, G. Bottura, P. Taddei, M. Garavani, R. Marchetti, and C. Sorlini, “Composting of solid and sludge residues from agricultural and food industries. Bioindicators of monitoring and compost maturity,” J. Environ. Sci. Health, Part A: Toxic/Hazard. Subst. Environ. Eng. 36 (4), 415–436 (2001). https://doi.org/10.1081/ESE-100103473

    Article  Google Scholar 

  31. M. C. Rowley, S. Grand, and É. P. Verrecchia, “Calcium–mediated stabilisation of soil organic carbon,” Biogeochemistry 137 (1–2), 27–49 (2018). https://doi.org/10.1007/s10533-017-0410-1

    Article  Google Scholar 

  32. C. Rumpel and I. Kögel–Knabner, “Deep soil organic matter—a key but poorly understood component of terrestrial C cycle,” Plant Soil 338 (1–2), 143–158 (2011). https://doi.org/10.1007/s11104-010-0391-5

    Article  Google Scholar 

  33. J. Sanderman and A. S. Grandy, “Ramped thermal analysis for isolating biologically meaningful soil organic matter fractions with distinct residence times,” Soil 6 (1), 131–144 (2020). https://doi.org/10.5194/soil-6-131-2020

    Article  Google Scholar 

  34. H. Schiedung, L. Bornemann, and G. Welp, “Seasonal variability of soil organic carbon fractions under arable land,” Pedosphere 27 (2), 380–386 (2017). https://doi.org/10.1016/S1002-0160(17)60326-6

    Article  Google Scholar 

  35. H.-R. Schulten and P. Leinweber, “Thermal stability and composition of mineral-bound organic matter in density fractions of soil: composition of organic matter in soil,” Eur. J. Soil Sci. 50 (2), 237–248 (1999). https://doi.org/10.1046/j.1365-2389.1999.00241.x

    Article  Google Scholar 

  36. O. A. Shapchenkova, Yu. N. Krasnoshchekov, and S. R. Loskutov, “Application of the methods of thermal analysis for the assessment of organic matter in postpyrogenic soils,” Eurasian Soil Sci. 44 (6), 677–685 (2011). https://doi.org/10.1134/S1064229311060123

    Article  Google Scholar 

  37. C. Siewert, “Rapid screening of soil properties using thermogravimetry,” Soil Sci. Soc. Am. J. 68 (5), 1656–1661 (2004). https://doi.org/10.2136/sssaj2004.1656

    Article  Google Scholar 

  38. C. Siewert, M. S. Demyan, and J. Kučerík, “Interrelations between soil respiration and its thermal stability,” J. Therm. Anal. Calorim. 110 (1), 413–419 (2012). https://doi.org/10.1007/s10973-011-2099-z

    Article  Google Scholar 

  39. V. Strezov, B. Moghtaderi, and J. A. Lucas, “Computational calorimetric investigation of the reactions during thermal conversion of wood biomass,” Biomass Bioenergy 27 (5), 459–465 (2004). https://doi.org/10.1016/j.biombioe.2004.04.008

    Article  Google Scholar 

  40. D. Tokarski, J. Kučerík, K. Kalbitz, M. S. Demyan, D. Barkusky, J. Ruehlmann, and C. Siewert, “Contribution of organic amendments to soil organic matter detected by thermogravimetry,” J. Plant Nutr. Soil Sci. 181 (5), 664–674 (2018). https://doi.org/10.1002/jpln.201700537

    Article  Google Scholar 

  41. D. Tokarski, M. Wiesmeier, H. Doležalová Weissmannová, K. Kalbitz, M. S. Demyan, J. Kučerík, and C. Siewert, “Linking thermogravimetric data with soil organic carbon fractions,” Geoderma 362, 114124 (2020). https://doi.org/10.1016/j.geoderma.2019.114124

    Article  Google Scholar 

  42. D. S. Volkov, O. B. Rogova, M. A. Proskurnin, Y. R. Farkhodov, and L. B. Markeeva, “Thermal stability of organic matter of typical chernozems under different land uses,” Soil Tillage Res. 197, 104500 (2020). https://doi.org/10.1016/j.still.2019.104500

    Article  Google Scholar 

  43. A. Yudina and Y. Kuzyakov, “Saving the face of soil aggregates,” Global Change Biol. 25 (11), 3574–3577 (2019). https://doi.org/10.1111/gcb.14779

    Article  Google Scholar 

  44. A. Yudina and Y. Kuzyakov, “Dual nature of soil structure: the unity of aggregates and pores,” Geoderma 434, 116478 (2023). https://doi.org/10.1016/j.geoderma.2023.116478

    Article  Google Scholar 

  45. M. Zimmermann, J. Leifeld, M. W. I. Schmidt, P. Smith, and J. Fuhrer, “Measured soil organic matter fractions can be related to pools in the RothC model,” Eur. J. Soil Sci. 58 (3), 658–667 (2007). https://doi.org/10.1111/j.1365-2389.2006.00855.x

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are thankful to students and post-graduate students of Tyumen State University V. Ivanov, A.A. Novoselov, B.R. Khabibullaev, I.A. Milyaev, and N.P. Samokhina for assistance in soil sampling and preparation the samples for analyses.

Funding

This work was supported by the Russian Science Foundation, project no. 23-24-00370 Thermal Properties of Soils as Indicator of Stability of Soil Organic Matter (https:// rscf.ru/project/23-24-00370/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Filimonenko.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by T. Chicheva

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

This study was presented at the International Scientific Conference XXVI Dokuchaev Youth Readings Soil Science Matrix (http://www.dokuchaevskie.ru/).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filimonenko, E.A., Uporova, M.A., Arbuzova, E.A. et al. Thermal Stability of Soil Organic Matter in Postagrogenic Luvic Phaeozems. Eurasian Soil Sc. 56 (Suppl 2), S139–S146 (2023). https://doi.org/10.1134/S1064229323602263

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229323602263

Keywords:

Navigation