Skip to main content
Log in

Variability of the Content and Stock of Soil Organic Matter in Time and Space: An Analytical Review

  • GENESIS AND GEOGRAPHY OF SOILS
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The aim of this analytical review is to systematize information on the quantitative characteristics of variation in the content and stock of organic carbon (Corg) in soils. The review considers the estimates for validity and reproducibility of determined Corg values, as well as the spatial variation and heterogeneity of Corg at different hierarchical levels of the soil cover composition and their changes in time. The most powerful factor of Corg changeability in soils is spatial variation. The absolute standard deviation and coefficient of variation for Corg content and stock in soil shows the trend of an increase with the logarithm of the examined plot area. This trend is observed on the background of a wide range of the values of the indicators of spatial Corg variation in each narrow range of the plot area, which leads to a high uncertainty of the estimates with an increase in the area coverage. Direct dry combustion is considered the preferable method among the methods used to determine Corg content. This method gives valid (i.e., with the least biases) and well reproducible data. The indirect Tyurin and Walkley–Black methods systematically underestimate the Corg content and their reproducibility is comparable to the amplitude of seasonal dynamics and minimum spatial variation indices within an elementary soil area. The estimates for the long-term trend of Corg content require strict adherence to stringent monitoring conditions over the time intervals longer than 15 years. The spatial variation in Corg stock is more pronounced as compared with Corg content, which further increases the requirements to monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Analytical Support for Monitoring the Humus Status of Soils: Methodological Recommendations (Rossel’khozakademiya, Pochv. Inst. im. V. V. Dokuchaeva, 1993) [in Russian].

  2. R. A. Afanas’ev, “Agrochemical support for precision farming,” Probl. Agrokhim. Ekol., No. 3, 46–53 (2008).

  3. R. A. Afanas’ev, “Methodology of field experiments on differentiated use of fertilizers in precision farming conditions,” Probl. Agrokhim. Ekol., No. 1, 38–44 (2010).

  4. J.-B. Wei, D.-N. Xiao, X.-Y. Zhang, and X.-Y. Li, “Topography and land use effects on the spatial variation of soil organic carbon: a case study in a typical small watershed of the black soil region in northeast China,” Eurasian Soil Sci. 41 (1), 39–47 (2008).

    Article  Google Scholar 

  5. S. E. Vitkovskaya, “Spatial variability of fertility parameters of soddy-podzolic soil in field experiments,” Agrofizika, No. 2, 19–25 (2011).

    Google Scholar 

  6. A. S. Vladychenskii, I. M. Ryzhova, V. M. Telesnina, and R. T. Galiakhmetov, “Spatial-temporal dynamics of organic carbon in soddy-podzolic soils of postagrogenic biogeocenoses,” Moscow Univ. Soil Sci. Bull. 64 (2), 53–59 (2009).

    Article  Google Scholar 

  7. In-Laboratory Control of the Reproducibility of the Results of Analysis of Soil and Agrochemical Objects. Methodical Recommendations (Pochv. Inst. im. V. V. Dokuchaeva, Moscow, 1984) [in Russian].

  8. V. R. Volobuev, Soils and Climate (Izd. Akad. Nauk Az. SSR, Baku, 1953) [in Russian].

    Google Scholar 

  9. V. V. Gertsyk, “Seasonal dynamics of humus in thick chernozems,” in Proceedings of Alekhin Central Black Earth Nature Reserve (Kursk, 1959), Vol. 5, pp. 32–38.

  10. K. G. Giniyatullin, A. A. Shinkarev, A. G. Fazylova, K. I. Kuz’mina, and A. A. Shinkarev (junior), “Spatial heterogeneity of secondary accumulation of humus in old arable horizons of fallow light gray forest soils,” Uch. Zap. Kazan. Univ. Est. Nauki 154 (4), 61–70 (2012).

    Google Scholar 

  11. K. G. Giniyatullin, G. Ya. Mukhametgalieva, and A. I. Latypova, “Application of different approaches to representative sampling when studying humus accumulation in fallow soils,” Uch. Zap. Kazan. Univ. Est. Nauki 155 (3), 208–220 (2013).

    Google Scholar 

  12. K. G. Giniyatullin, S. S. Ryazanov, E. V. Smirnova, L. I. Latypova, and L. Yu. Ryzhikh, “Using geostatistical methods to estimate organic matter reserves in fallow soils,” Uch. Zap. Kazan. Univ. Est. Nauki 161 (2), 275–292 (2019).

    Google Scholar 

  13. G. P. Glazunov, N. V. Afonchenko, and A. V. Apukhtin, “Analysis of spatial variation in fertility indicators of chernozem soils in slope agricultural landscapes,” Vestn. Kursk. Gos. S-kh. Akad., 23–31 (2019).

    Google Scholar 

  14. K. D. Glinka, Soil Science (Novaya Derevnya, Moscow, 1927) [in Russian].

  15. GOST (State Standard) 16263-70. State System for Ensuring the Uniformity of Measurements. Metrology. Terms and Definitions.

  16. GOST (State Standard) 26213-2021. Soils. Methods for Determining Organic Matter.

  17. O. N. Gotra, Candidate’s Dissertation in Biology (Moscow, 2004).

  18. V. I. Dvorkin, Metrology and Quality Assurance of Quantitative Chemical Analysis (Khimiya, Moscow, 2001) [in Russian].

    Google Scholar 

  19. E. T. Degtyareva, Results of Many Years of Field Experience in the Reclamation of Slonetzes in the Gorodishchensky District of the Volgograd Oblast in 1975-1999. Fund Materials of the Department of Genesis and Reclamation of Saline and Solonetz Soils of Federal Research Center Dokuchaev Soil Science Institute.

  20. E. A. Dmitriev, Mathematical Statistics in Soil Science (Mosk. Univ., Moscow, 1995) [in Russian].

    Google Scholar 

  21. V. V. Dokuchaev, Russian Chernozem (Russkaya Kollektsiya, St. Petersburg, 2008) [in Russian].

    Google Scholar 

  22. P. M. Dokuchaev, Candidate’s Dissertation in Biology (Moscow, 2017).

  23. B. A. Dospekhov and V. A. Mazurina, “Variation of agrochemical properties of soddy-podzolic soil and methods of soil sampling in field experiments,” Agrokhimiya, No. 1, 86–94 (1970).

    Google Scholar 

  24. S. M. Kayugina and D. V. Eremina, “Spatial variability of the humus status of proper gray forest soils in the Northern Trans-Urals,” Izv. Orenburg. Gos. Agrar. Univ., No. 3, 21–26 (2022). https://doi.org/10.37670/2073-0853-2022-95-3-21-26

  25. Classification and Diagnostics of Russian Soils (Oikumena, Smolensk, 2004) [in Russian].

  26. Classification and Diagnostics of Soils of the USSR (Kolos, Moscow, 1977) [in Russian].

  27. B. M. Kogut, Doctoral Dissertation in Agriculture (Pochv. Inst. im. V. V. Dokuchaeva, Moscow, 1996).

  28. B. M. Kogut, N. M. Krasnova, V. A. Bol’shakov, E. S. Brodskii, V. I. Kuleshov, and A. S. Frid, “Analytical support for monitoring carbon content in soils,” Pochvovedenie, No. 12, 138–143 (1992).

    Google Scholar 

  29. B. M. Kogut, E. Yu. Milanovskii, and Sh. A. Khamatnurov, “On methods for determining the content of organic carbon in soils (critical review),” Byull. Pochv. Inst. im. V. V. Dokuchaeva 114, 5–28 (2023). https://doi.org/10.19047/0136-1694-2023-114-5-28

    Article  Google Scholar 

  30. B. M. Kogut and A. S. Frid, “Comparative assessment of methods for determining humus content in soils,” Pochvovedenie, No. 9, 119–123 (1993).

    Google Scholar 

  31. M. V. Kozlov, Planning Environmental Studies: Theory and Practical Recommendations (Tovarishchestvo Nauchnykh Izdanii KMK, Moscow, 2014) [in Russian].

    Google Scholar 

  32. M. I. Kondrashkina, “Spatial variability of the content of sand fraction and humus within a single agricultural land,” in Natural and Anthropogenic Soil Heterogeneity and Statistical Methods for Its Study. Collection of Scientific Articles (Izdatel’sko-Torgovaya Korporatsiya Dashkov and Co, Moscow, 2022), pp. 84–88 [in Russian].

    Google Scholar 

  33. P. V. Krasil’nikov and V. A. Sidorova, “Geostatistical analysis of the spatial structure of acidity and organic carbon content of zonal soils of the Russian Plain,” in Geostatistics and Soil Geography (Nauka, Moscow, 2007), pp. 67–80.

    Google Scholar 

  34. I. F. Kuzyakova and Ya. V. Kuzyakov, “The influence of microrelief on the spatial variation of humus content in soddy-podzolic soil of a long-term field experiment,” Pochvovedenie, No. 7, 824–831 (1997).

    Google Scholar 

  35. M. T. Kuprichenkov, “Seasonal dynamics of chemical and agrochemical properties of bio- and agrochernozem,” Dostizh. Nauki Tekh. APK, No. 7, 67–68 (2013).

    Google Scholar 

  36. D. N. Lipatov, A. I. Shcheglov, D. V. Manakhov, Yu. A. Zavgorodnyaya, and P. T. Brekhov, “Spatial variation of benzo(a)pyrene content and agrozem properties near the Yuzhno-Sakhalinskaya Thermal Power Plant,” Eurasian Soil Sci. 48 (5), 547–554 (2015). https://doi.org/10.1134/S1064229315030084

    Article  Google Scholar 

  37. D. N. Lipatov, V. A. Lyzhin, and L. A. Vezhlivtseva, “Spatial distribution and long-term dynamics of humus content in agricultural landscapes of the Tula oblast,” Vestn. Mosk. Univ., Ser. 17: Pochvoved., No. 3, 35–41 (2005).

  38. A. V. Litvinovich, O. Yu. Pavlova, A. V. Lavrishchev, and I. A. Plylova, “Spatial heterogeneity of stable strontium content in virgin and arable soddy-podzolic soils and the role of humic substances in its fixation,” Agrokhimiya, No. 4, 77–83 (2012).

    Google Scholar 

  39. V. V. Medvedev and A. I. Mel’nik, “Heterogeneity of agrochemical soil indicators in space and time,” Agrokhimiya, No. 1, 20–26 (2010).

    Google Scholar 

  40. Metrological Support of Analytical Work in Soil Science. Methodical Recommendations (Pochv. Inst. im. V. V. Dokuchaeva, Moscow, 1988) [in Russian].

  41. Yu. L. Meshalkina, I. I. Vasenev, I. F. Kuzyakova, and V. A. Romanenkov, Geostatistics in Soil Science and Ecology. Interactive Course for Preparing Masters in the Field of “Agrochemistry and Agricultural Soil Science”. Profile “Agroecology”, Program “Agroecological Management and Engineering” (Moscow, 2010).

  42. D. A. Nikitin, M. V. Semenov, T. I. Chernov, N. A. Ksenofontova, A. D. Zhelezova, E. A. Ivanova, N. B. Khitrov, and A. L. Stepanov, “Microbiological indicators of soil ecological functions: a review,” Eurasian Soil Sci. 55 (2), 221–234 (2022). https://doi.org/10.1134/S1064229322020090

    Article  Google Scholar 

  43. N. S. Oreshkina, Statistical Estimations of Spatial Variability of Soil Properties (Mosk. Univ., Moscow, 1988) [in Russian].

    Google Scholar 

  44. D. S. Orlov, O. N. Biryukova, and N. I. Sukhanova, Organic Matter in Soils of the Russian Federation (Nauka, Moscow, 1996) [in Russian].

    Google Scholar 

  45. D. S. Orlov, Chemistry of Soils (Mosk. Univ., Moscow, 1992) [in Russian].

    Google Scholar 

  46. Field Determinant of Russian Soils (Pochv. Inst. im. V. V. Dokuchaeva, Moscow, 2008) [in Russian].

  47. V. V. Ponomareva and T. A. Plotnikova, “Some data on the degree of intramolecular oxidation of humus in different types of soils (on the issue of the conversion factor from carbon to humus),” Pochvovedenie, No. 7, 85–95 (1967).

    Google Scholar 

  48. Soils of Moldova, Vol. 1: Genesis, Ecology, Classification and Systematic Description of Soils (Shtiintsa, Kishinev, 1984) [in Russian].

  49. I. M. Ryzhova and M. A. Podvezennaya, “Spatial variability of the organic carbon pool in soils of forest and steppe biogeocenoses,” Eurasian Soil Sci. 41 (12), 1260–1267 (2008).

    Article  Google Scholar 

  50. E. N. Savkova, “Systematization of approaches to cause-and-effect modeling of uncertainty in sampling and sample preparation,” Standartizatsiya, No. 1, 33–44 (2019).

    Google Scholar 

  51. V. P. Samsonova, Spatial Variability of Soil Properties: the Example of Soddy-Podzolic Soils (Izd. LKI, Moscow, 2008) [in Russian].

    Google Scholar 

  52. V. P. Samsonova, Yu. N. Blagoveshchenskii, and Yu. L. Meshalkina, “Use of empirical Bayesian kriging for revealing heterogeneities in the distribution of organic carbon on agricultural lands,” Eurasian Soil Sci. 50 (3), 305–311 (2017). https://doi.org/10.1134/S1064229317030103

    Article  Google Scholar 

  53. V. P. Samsonova and M. I. Timofeeva, “Dynamics of spatial variability of organic matter content in soddy-podzolic arable soil,” Vestn. Mosk. Univ., Ser. 17: Pochvoved., No. 1, 18–23 (1987).

  54. V. P. Samsonova, Yu. L. Meshalkina, and E. A. Dmitriev, “Structures of spatial variability of agrochemical properties of arable soddy-podzolic soil,” Pochvovedenie, No. 11, 1359–1366 (1999).

    Google Scholar 

  55. I. A. Sakhabiev, “Assessment of changes in the spatial structure of soil indicators in the territory of long-term variety testing (using the example of the Zainsky State Variety Testing Site),” in Natural and Anthropogenic Soil Heterogeneity and Statistical Methods for Its Study. Collection of Scientific Articles (Izdatel’sko-Torgovaya Korporatsiya Dashkov and Co, Moscow, 2022), pp. 61–66.

    Google Scholar 

  56. V. M. Semenov and B. M. Kogut, Soil Organic Matter (GEOS, Moscow, 2015) [in Russian].

    Google Scholar 

  57. V. A. Sidorova, “Bibliography 1939–2006,” in Geostatistics and Soil Geography (Nauka, Moscow, 2007), pp. 134–173 [in Russian].

    Google Scholar 

  58. V. A. Sidorova, “Changes in spatial variability of soil properties as a result of anthropogenic impact,” Ross. Zh. Prikl. Ekol., No. 3, 30–47 (2010). http://resources. krc.karelia.ru/krc/doc/publ2010/IB_ecol_pochv_030-47.pdf.

  59. V. A. Sidorova, “Dynamics of spatial variation in soil properties of meadow agrocenoses in Karelia during post-anthropogenic development,” Ross. Zh. Prikl. Ekol., No. 3, 23–27 (2016).

  60. V. A. Sidorova and P. V. Krasilnikov, “Soil-geographic interpretation of spatial variability in the chemical and physical properties of topsoil horizons in the steppe zone,” Eurasian Soil Sci. 40 (10), 1042–1051 (2007).

    Article  Google Scholar 

  61. V. A. Sidorova and F. V. Fedorov, “The effect of beavers on the variability of soil properties in South Karelia,” in Geostatistics and Soil Geography (Nauka, Moscow, 2007), pp. 92–108 [in Russian].

    Google Scholar 

  62. Yu. V. Simonova, A. V. Rusakov, and A. G. Ryumin, “Variability of carbon stocks at the level of sample sites (Yaroslavl oblast, Upper Volga),” in Natural and Anthropogenic Soil Heterogeneity and Statistical Methods for Its Study. Collection of Scientific Articles (Izdatel’sko-Torgovaya Korporatsiya Dashkov and Co, Moscow, 2022), pp. 37–42.

  63. V. G. Smirnov, Spatial Distribution of Organic Matter in Soils of Eroded Landscapes of the Southwestern Forest-Steppe Province of the Central Chernobyl Region. Graduate qualifying work of the student in the field of study 21.04.02 Land management and cadasters of full-time education, group 81001614 (Belgorod. Gos. Nats. Issled. Univ., Belgorod, 2018). https://nauchkor.ru/pubs/prostranstvennoe-raspredelenie-organicheskogo-veschestva-v-pochvah-erozionnyh-landshaftov-yugo-zapadnoy-lesostepnoy-provintsii-tschr-5c1a75f57966e104f6f85abf.

  64. L. G. Smirnova, Yu. G. Chendev, L. L. Novykh, P. A. Ukrainskii, and N. E. Novykh, “Microzonal peculiarities of the profile and spatial distribution of humus content in slope soils,” Nauchn. Vedomosti. Ser. Est. Nauki 16 (15), 160–167 (2011).

    Google Scholar 

  65. N. P. Sorokina and B. M. Kogut, “Dynamics of humus content in arable chernozems and approaches to its study,” Pochvovedenie, No. 2, 178–184 (1997).

    Google Scholar 

  66. A. R. Suleimanov, “Digital mapping of soil organic carbon content in an arable area of the Republic of Bashkortostan,” in Natural and Anthropogenic Soil Heterogeneity and Statistical Methods for Its Study. Collection of Scientific Articles (Izdatel’sko-Torgovaya Korporatsiya Dashkov and Co, Moscow, 2022), pp. 57–60.

    Google Scholar 

  67. G. M. Tumin, The Influence of Forest Belts on the Soil in the Kamennaya Steppe (Kommuna, Voronezh, 1930) [in Russian].

    Google Scholar 

  68. I. V. Tyurin, “A new modification of the volumetric method for determining humus using chromic acid,” Pochvovedenie, Nos. 5–6, 36–47 (1931).

    Google Scholar 

  69. Standard Operating Procedure for Soil Organic Carbon. Tyurin’s Spectrophotometric Method (FAO, Rome, 2021).

  70. V. M. Fridland, Structure of Soil Cover (Mysl’, Moscow, 1972) [in Russian].

    Google Scholar 

  71. N. B. Khitrov, “Theoretical and methodological aspects of studying patterns of soil change under anthropogenic impacts,” in Patterns of Soil Change under Anthropogenic Influences and Regulation of the Sate and Functioning of the Soil Cover: Proceedings of All-Russian Scientific Conference (Pochv. Inst. im. V. V. Dokuchaeva, Moscow, 2010), pp. 3–12.

  72. L. K. Tselishcheva and E. K. Daineko, “Essay on the soils of the Streletsky section of the Central Black Earth Nature Reserve,” in Proceedings of Alekhin Central Black Earth Nature Reserve (Lesnaya Promyshlennost’, Moscow, 1967), Vol. 10, pp. 154–186.

    Google Scholar 

  73. A. P. Tsirulev, “Spatial heterogeneity of soil fertility indicators and the effectiveness of differentiated application of fertilizers in the Samara Trans-Volga region,” Pitan. Rast., No. 1, 6–9 (2011).

  74. Yu. I. Cheverdin and V. A. Bespalov, “Spatial variation of humus content in chernozems of the Kamennaya Steppe,” Plodorodie, No. 4, 28–29 (2011).

    Google Scholar 

  75. O. V. Chernova, O. M. Golozubov, I. O. Alyabina, and D. G. Schepaschenko, “Integrated approach to spatial assessment of soil organic carbon in the Russian Federation,” Eurasian Soil Sci. 54 (3), 325–336 (2021). https://doi.org/10.1134/S1064229321030042

    Article  Google Scholar 

  76. Chernozems of the USSR (Kolos, Moscow, 1974), Vol. 1.

  77. G. Ya. Chesnyak, F. Ya. Gavrilyuk, I. A. Krupenikov, N. I. Laktionov, and I. I. Shilikhina, “Humus status of chernozems,” in Russian Chernozem – 100 Years after Dokuchaev (Nauka, Moscow, 1983), pp. 186–198.

    Google Scholar 

  78. O. V. Chestnykh and D. G. Zamolodchikov, “Dependence of the density of soil horizons on their depth and humus content,” Pochvovedenie, No. 8, 937–944 (2004).

    Google Scholar 

  79. E. V. Shamrikova, E. V. Vanchikova, B. M. Kondratenok, E. M. Lapteva, and S. N. Kostrova, “Problems and limitations of the dichromatometric method for measuring soil organic matter content: a review,” Eurasian Soil Sci. 55 (7), 861–867 (2022). https://doi.org/10.1134/S1064229322070092

    Article  Google Scholar 

  80. P. A. Shary and D. L. Pinskii, “Statistical evaluation of the relationships between spatial variability in the organic carbon content in gray forest soils, soil density, concentrations of heavy metals, and topography,” Eurasian Soil Sci. 46 (11), 1076–1087 (2013).

    Article  Google Scholar 

  81. S. A. Shoba, I. O. Alyabina, V. M. Kolesnikova, E. N. Molchanov, V. A. Rozhkov, V. S. Stolbovoi, I. S. Urusevskaya, B. V. Sheremet, and D. E. Konyushkov, Soil Resources of Russia. Soil-Geographical Database (GEOS, Moscow, 2010) [in Russian].

    Google Scholar 

  82. AAFC. Agriculture and Agri-Food Canada. The Canadian Soil Information System (CANSIS) and the National Soil Database (NSDB). http://sis.agr.gc.ca/ cansis/index.html.

  83. K. Adhikari, A. E. Hartemink, B. Minasny, R. Bou Kheir, M. B. Greve, and M. H. Greve, “Digital mapping of soil organic carbon contents and stocks in Denmark,” PLoS One 9 (8), e105519 (2014). https://doi.org/10.1371/journal.pone.0105519

    Article  Google Scholar 

  84. M. Apesteguia, A. F. Plante, and I. Virtoc, “Methods assessment for organic and inorganic carbon quantification in calcareous soils of the Mediterranean region,” Geoderma Reg. 12 (4), 39–48 (2017). https://doi.org/10.1016/j.geodrs.2017.12.001

    Article  Google Scholar 

  85. T. Aşkin and R. Kizilkaya, “Spatial distribution patterns of soil microbial biomass carbon within the pasture,” Agriculturae Conspectus Scientificus 72 (1), 75–79 (2007).

    Google Scholar 

  86. T. Aşkin and R. Kizilkaya, “The spatial variability of urease activity of surface agricultural soils within an urban area,” J. Cent. Eur. Agric. 6 (2), 161–166 (2005).

    Google Scholar 

  87. ASRIS. Australian Soil Resource Information System, Australian Department of Agriculture. http://www. asris.csiro.au/index_ie.html.

  88. R. Awale, M. A. Emeson, and S. Machado, “Soil organic carbon pools as early indicators for soil organic matter stock changes under different tillage practices in Inland Pacific Northwest,” Front. Ecol. Evol. 5, 96 (2017). https://doi.org/10.3389/fevo.2017.00096

    Article  Google Scholar 

  89. Y. Bai and Y. Zhou, “The main factors controlling spatial variability of soil organic carbon in a small karst watershed, Guizhou Province, China,” Geoderma 357, 113938 (2020). https://doi.org/10.1016/j.geoderma.2019.113938

    Article  Google Scholar 

  90. D. W. Bergstrom, C. M. Monreal, J. A. Millette, and D. J. King, “Spatial dependence of soil enzyme activities along a slope,” Soil Sci. Soc. Am. J. 62, 1302–1308 (1998).

    Article  Google Scholar 

  91. K. Black, R. E. Creamer, G. Xenakis, and S. Cook, “Improving forest soil carbon models using spatial data and geostatistical approaches,” Geoderma 232–234, 487–499 (2014). https://doi.org/10.1016/j.geoderma.2014.05.022

    Article  Google Scholar 

  92. L. C. Blakemore, P. L. Searle, and B. K. Daly, “Methods for chemical analysis of soils,” in New Zealand Soil Bureau. Scientific Report 10 (Dep. of Sci. and Indus-trial Res, New Zealand, 1977).

    Google Scholar 

  93. R. E. J. Boerner, J. A. Brinkman, and A. Smith, “Seasonal variations in enzyme activity and organic carbon in soil of a burned and unburned hardwood forest,” Soil Biol. Biochem. 37, 1419–1426 (2005). https://doi.org/10.1016/j.soilbio.2004.12.012

    Article  Google Scholar 

  94. T. B. Bruun, C. M. Ryan, A. de Neergaard, and N. J. Berry, “Soil organic carbon stocks maintained despite intensification of shifting cultivation,” Geoderma 388, 114804 (2021). https://doi.org/10.1016/j.geoderma.2020.114804

    Article  Google Scholar 

  95. C. A. Campbell, V. O. Biederbeck, D. Hahn, G. P. Lafond, G. Wen, and J. Schoenau, “Seasonal trends in soil biochemical attributes: effects of crop management on a Black Chernozem,” Can. J. Soil Sci. 79, 85–97 (1999a). https://doi.org/10.4141/S98-029

    Article  Google Scholar 

  96. C. A. Campbell, V. O. Biederbeck, R. P. Zentner, D. Hahn, G. Wen, and J. Schoenau, “Seasonal trends in selected soil biochemical attributes: effects of crop rotation in the semiarid prairie,” Can. J. Soil Sci. 79, 73–84 (1999). https://doi.org/10.4141/S98-008

    Article  Google Scholar 

  97. F. Carré, N. Jeannée, S. Casalegno, O. Lemarchand, H. I. Reuter, and L. Montanarella, “Mapping the CN ratio of the forest litters in Europe-Lessons for Global Digital Soil Mapping,” in Digital Soil Mapping. Progress in Soil Science 2 (Springer Science + Business Media B.V., New York, 2010), pp. 217–225. https://doi.org/10.1007/978-90-481-8863-5_18

  98. V. Chaplot, B. Bouahom, and C. Valentin, “Soil organic carbon stocks in Laos: spatial variations and controlling factors,” Global Change Biol. 16, 1380–1393 (2010). https://doi.org/10.1111/j.1365-2486.2009.02013.x

    Article  Google Scholar 

  99. B. U. Choudhury, K. P. Mohapatra, A. Das, P. T. Das, L. Nongkhlaw, R. A. Fiyaz, S. V. Ngachan, S. Hazarika, D. J. Rajkhowa, and G. C. Munda, “Spatial variability in distribution of organic carbon stocks in the soils of North East India,” Curr. Sci. 104 (5), 604–614 (2013).

    Google Scholar 

  100. F. Constancias, S. Terrat, N. P. A. Saby, W. Horrigue, J. Villerd, J.-P. Guillemin, L. Biju-Duval, V. Nowak, S. Dequiedt, L. Ranjard, and N. C. Prévost-Bouré, “Mapping and determinism of soil microbial community distribution across an agricultural landscape,” MicrobiologyOpen, 1–13 (2015). https://doi.org/10.1002/mbo3.255

  101. S. C. Cunningham, K. J. Metzeling, R. Mac Nally, J. R. Thomson, and T. R. Cavagnaro, “Changes in soil carbon of pastures after afforestation with mixed species: Sampling, heterogeneity and surrogates,” Agric., Ecosyst. Environ. 158, 58–65 (2012). https://doi.org/10.1016/j.agee.2012.05.019

    Article  Google Scholar 

  102. L. Deng, K. Wang, G. Zhu, Y. Liu, L. Chen, and Z. Shangguan, “Changes of soil carbon in five land use stages following 10 years of vegetation succession on the Loess Plateau, China,” Catena 171, 185–192 (2018). https://doi.org/10.1016/j.catena.2018.07.014

    Article  Google Scholar 

  103. J. A. Dijkshoorn, SOTER Database for Southern Africa (SOTERSAF) (ISRIC—World Soil Information, Wageningen, 2003).

    Google Scholar 

  104. J. A. Dijkshoorn, J. R. M. Huting, and P. Tempel, Update of the 1 : 5 Million Soil and Terrain Database for Latin America and the Caribbean (SOTERLAC; version 2.0) (ISRIC—World Soil Information, Wageningen, 2005).

  105. J. F. Dormaar, A. Johnston, and S. Smoliak, “Seasonal variation in chemical characteristics of soil organic matter of grazed and ungrazed mixed prairie and fescue grassland,” J. Range Manage. 30, 195–198 (1977). https://doi.org/10.2307/3897467

    Article  Google Scholar 

  106. S. Eze, S. M. Palmer, and P. J. Chapman, “Soil organic carbon stock in grasslands: effects of inorganic fertilizers, liming and grazing in different climate settings,” J. Environ. Manage. 223, 74–84 (2018). https://doi.org/10.1016/j.jenvman.2018.06.013

    Article  Google Scholar 

  107. FAO. Global Soil Laboratory Network. Standard Operating Procedure for Soil Organic CarbonWalkley-Black Method: Titration and Colorimetric Method (FAO, Rome, 2019). https://www.fao.org/3/ca7471en/ca7471en.pdf.

  108. FAO. Global Soil Laboratory Network. Standard Operating Procedure for Soil Total Carbon—Dumas Dry Combustion Method (FAO, Rome, 2019). https://www. fao.org/3/ca7781en/ca7781en.pdf.

  109. FAO. A Protocol for Measurement, Monitoring, Reporting and Verification of Soil Organic Carbon in Agricultural LandscapesGSOC-MRV Protocol (Rome, 2020). https://doi.org/10.4060/cb0509en

  110. I. Funes, R. Savé, P. Rovira, R. Molowny-Horas, J. M. Alcañiz, E. Ascaso, I. Herms, C. Herrero, J. Boixadera, and J. Vayreda, “Agricultural soil organic carbon stocks in the north-eastern Iberian Peninsula: drivers and spatial variability,” Sci. Total Environ. 668, 283–294 (2019). https://doi.org/10.1016/j.scitotenv.2019.02.317

    Article  Google Scholar 

  111. C. Gardi and F. Sconosciuto, “Evaluation of carbon stock variation in Northern Italian soils over the last 70 years,” Sustainable Sci. 2, 237–243 (2007). https://doi.org/10.1007/s11625-007-0034-9

    Article  Google Scholar 

  112. J. A. Gómez, G. Guzmán, T. Vanwalleghem, and K. Vanderlinden, “Spatial variability of soil organic carbon stock in an olive orchard at catchment scale in Southern Spain,” Int. Soil Water Conserv. Res. 12, 002 (2022). https://doi.org/10.1016/j.iswcr.2022.12.002

  113. T. Guillaume, L. Bragazza, C. Levasseur, Z. Libohova, and S. Sinaj, “Long-term soil organic carbon dynamics in temperate cropland-grassland systems,” Agric., Ecosyst. Environ. 305, 107184 (2021). https://doi.org/10.1016/j.agee.2020.107184

    Article  Google Scholar 

  114. L. B. Guo and R. M. Gifford, “Soil carbon stock and land use change: a meta-analysis,” Global Change Biol. 8 (4), 345–360 (2002). https://doi.org/10.1046/j.1354-1013.2002.00486.x

    Article  Google Scholar 

  115. Harmonized World Soil Database (Version 1.0). FAO, IIASA, ISRIC, ISS-CAS, JRC (FAO, Rome, 2008).

  116. M. J. J. Hoogsteen, A. M. Breure, and M. K. van Ittersum, “Monitoring soil organic matter on grassland farms: an exploratory analysis,” Geoderma 405, 115456 (2022). https://doi.org/10.1016/j.geoderma.2021.115456

    Article  Google Scholar 

  117. B. Huang, W. Sun, Y. Zhao, J. Zhu, R. Yang, Z. Zou, F. Ding, and J. Su, “Temporal and spatial variability of soil organic matter and total nitrogen in an agricultural ecosystem as affected by farming practices,” Geoderma 139, 336–345 (2007). https://doi.org/10.1016/j.geoderma.2007.02.012

    Article  Google Scholar 

  118. Intergovernmental Panel on Climate Change. Good Practice Guidance for Land Use, Land-Use Change and Forestry. IPCC National Greenhouse Gas Inventories Programme, Ed. by J. Penman (IPCC, 2008).

    Google Scholar 

  119. IPCC 2019. Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Ed. by Calvo Buendia (IPCC, 2019).

    Google Scholar 

  120. H. Jenny, Factors of Soil Formation: a System of Quantitative Pedology (Dover Publications, New York, 1941).

    Book  Google Scholar 

  121. W. M. Johnson, “The pedon and the polypedon,” Soil Sci. Soc. Am. Proc. 27, 212–215 (1963).

    Article  Google Scholar 

  122. M. Lacoste, B. Minasny, A. McBratney, D. Michot, V. Viaud, and C. Walter, “High resolution 3D mapping of soil organic carbon in a heterogeneous agricultural landscape,” Geoderma 213, 296–311 (2014). https://doi.org/10.1016/j.geoderma.2013.07.002

    Article  Google Scholar 

  123. R. Lal, “Sequestering atmospheric carbon dioxide,” Crit. Rev. Plant Sci. 28, 90–96 (2009). https://doi.org/10.1080/07352680902782711

    Article  Google Scholar 

  124. C. Le Bas, D. King, M. Jamagne, and J. Daroussin, The European Soil Information System (European Soil Bureau Research, Luxembourg, 1998).

    Google Scholar 

  125. D. Liptzin, C. E. Norris, S. B. Cappellazzi, G. Mac Bean, M. Cope, K. L. H. Greub, E. L. Rieke, et al., “An evaluation of carbon indicators of soil health in long-term agricultural experiments,” Soil Biol. Biochem. 172, 108708 (2022). https://doi.org/10.1016/j.soilbio.2022.108708

    Article  Google Scholar 

  126. E. Maillard, B. G. McConkey, and D. A. Angers, “Increased uncertainty in soil carbon stock measurement with spatial scale and sampling profile depth in world grasslands: a systematic analysis,” Agric., Ecosyst. Environ. 236, 268–276 (2017). https://doi.org/10.1016/j.agee.2016.11.024

    Article  Google Scholar 

  127. M. L. Mendonça-Santos, R. O. Dart, H. G. Santos, M. R. Coelho, R. L. L. Berbara, and J. F. Lumbreras, “Digital soil mapping of topsoil organic carbon content of Rio de Janeiro State, Brazil,” in Digital Soil Mapping. Progress in Soil Science 2. (Springer Science + Business Media B.V., New York, 2010), pp. 255–266. https://doi.org/10.1007/978-90-481-8863-5_21

  128. B. Minasny, A. B. McBratney, B. P. Malone, and I. Wheeler, “Digital mapping of soil carbon,” Adv. Agron. 118, 1–47 (2013). https://doi.org/10.1016/B978-0-12-405942-9.00001-3

    Article  Google Scholar 

  129. U. Mishra, R. Lal, D. Liu, and M. Van Meirvenne, “Predicting the spatial variation of the soil organic carbon pool at a regional scale,” Soil Sci. Soc. Am. J. 74 (3), 906–914 (2010). https://doi.org/10.2136/sssaj2009.0158

    Article  Google Scholar 

  130. U. Mishra and W. J. Riley, “Scaling impacts on environmental controls and spatial heterogeneity of soil organic carbon stocks,” Biogeosciences, No. 12, 3993–4004 (2015). https://doi.org/10.5194/bg-12-3993-2015

    Article  Google Scholar 

  131. D. W. Nelson and L. E. Sommers, “Total carbon, organic carbon, and organic matter,” in Methods of Soil Analysis, Part 3: Chemical Methods (SSSA Book Series, Madison, 1996), pp. 961–1010.

  132. C. Nguemezi, P. Tematio, F. B. T. Silatsa, and M. Yemefack, “Spatial variation and temporal decline (1985–2017) of soil organic carbon stocks (SOCS) in relation to land use types in Tombel area, South-West Cameroon,” Soil Tillage Res. 213, 1051114 (2021). https://doi.org/10.1016/j.still.2021.105114

    Article  Google Scholar 

  133. I. Oueslati, P. Allamano, E. Bonifacio, and P. Claps, “Vegetation and topographic control on spatial variability of soil organic carbon,” Pedosphere 23, 48–58 (2013).

    Article  Google Scholar 

  134. J. Peigné, J.-F. Vian, M. Cannavacciuolo, B. Bottollier, and R. Chaussod, “Soil sampling based on field spatial variability of soil microbial indicators,” Eur. J. Soil Biol., 488–495 (2009). https://doi.org/10.1016/j.ejsobi.2009.09.002

  135. A. Piotrowska, J. Dlugosz, B. Namysłowska-Wilczyńska, and R. Zamorski, “Field-scale variability of topsoil dehydrogenase and cellulase activities as affected by variability of some physico-chemical properties,” Biol. Fertil. Soils 47, 101–109 (2011). https://doi.org/10.1007/s00374-010-0507-3

    Article  Google Scholar 

  136. M. H. Rahman, A. W. Holmes, and S. J. Saunders, “Spatio-temporal variation in soil organic carbon under kiwifruit production systems of New Zealand,” in Proceedings of 1st Int. Symposium on Organic Matter Management and Compost in Horticulture, Ed. by J. Biala et al. (Acta Hort. 1018, ISHS, 2014), pp. 279–286.

  137. I. A. Romanenko, V. A. Romanenkov, P. Smith, J. U. Smith, O. D. Sirotenko, N. V. Lisovoi, L. K. Shevtsova, D. I. Rukhovich, and P. V. Koroleva, “Constructing regional scenarios for sustainable agriculture in European Russia and Ukraine for 2000 to 2070,” Reg. Environ. Change 7, 63–77 (2007). https://doi.org/10.1007/s10113-007-0032-6

    Article  Google Scholar 

  138. R. A. V. Rossel, R. Webster, E. N. Bui, and J. A. Baldock, “Baseline map of organic carbon in Australian soil to support national carbon accounting and monitoring under climate change,” Global Change Biol. 20, 2953–2970 (2014). https://doi.org/10.1111/gcb.12569

    Article  Google Scholar 

  139. D. I. Rukhovich, P. V. Koroleva, E. V. Vilchevskaya, V. A. Romanenkov, and L. G. Kolesnikova, “Constructing a spatially-resolved database for modelling soil organic carbon stocks of croplands in European Russia,” Reg. Environ. Change 7, 51–61 (2007). https://doi.org/10.1007/s10113-007-0029-1

    Article  Google Scholar 

  140. W. Qiu, D. Curtin, P. Johnstone, M. Beare, and G. Hernandez-Ramirez, “Small-scale spatial variability of plant nutrients and soil organic matter: an arable cropping case study,” Commun. Soil Sci. Plant Anal., (2016). https://doi.org/10.1080/00103624.2016.1228945

  141. I. Oueslati, P. Allamano, E. Bonifacio, and P. Claps, “Vegetation and topographic control on spatial variability of soil organic carbon,” Pedosphere 23, 48–58 (2013).

    Article  Google Scholar 

  142. J. Schimel, “Modeling ecosystem-scale carbon dynamics in soil: the microbial dimension,” Soil Biol. Biochem. 178, 108948 (2023). https://doi.org/10.1016/j.soilbio.2023.108948

    Article  Google Scholar 

  143. I. Schöning, K. U. Totsche, and I. Kögel-Knabner, “Small scale spatial variability of organic carbon stocks in litter and solum of a forested Luvisol,” Geoderma 136, 631–642 (2006). https://doi.org/10.1016/j.geoderma.2006.04.023

    Article  Google Scholar 

  144. C. J. E. Schulp and P. H. Verburg, “Effect of land use history and site factors on spatial variation of soil organic carbon across a physiographic region,” Agric., Ecosyst. Environ. 133, 86–97 (2009). https://doi.org/10.1016/j.agee.2009.05.005

    Article  Google Scholar 

  145. M. Shahbaz, P. Bengtson, J. R. Mertes, B. Kulessa, and N. Kljun, “Spatial heterogeneity of soil carbon exchanges and their drivers in a boreal forest,” Sci. Total Environ. 831, 154876 (2022). https://doi.org/10.1016/j.scitotenv.2022.154876

    Article  Google Scholar 

  146. E. V. Shamrikova, B. M. Kondratenok, E. A. Tumanova, E. V. Vanchikova, E. M. Lapteva, T. V. Zonova, E. I. Lu-Lyan-Min, A. P. Davydova, Z. Libohova, and N. Suvannang, “Transferability between soil organic matter measurement methods for database harmonization,” Geoderma 412, 115547 (2022). https://doi.org/10.1016/j.geoderma.2021.115547

    Article  Google Scholar 

  147. Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture. American Web Soil Survey and Geographic (SSURGO). http://soildatamart.nrcs.usda.gov

  148. F. Stevens, P. Bogaert, and B. van Wesemael, “Detecting and quantifying field-related spatial variation of soil organic carbon using mixed-effect models and airborne imagery,” Geoderma 259–260, 93–103 (2015). https://doi.org/10.1016/j.geoderma.2015.05.008

    Article  Google Scholar 

  149. H. Stoyan, H. De-Polli, S. Bohm, G. P. Robertson, and E. A. Paul, “Spatial heterogeneity of soil respiration and related properties at the plant scale,” Plant Soil 222, 203–214 (2000). https://doi.org/10.1023/A:1004757405147

    Article  Google Scholar 

  150. M. A. Tabatabai and J. M. Bremner, “Use of the Leco automatic 70-second carbon analyzer for total carbon analyses of soils,” Soil Sci. Soc. Am. Proc. 34 (4), 608–610 (1970).

    Article  Google Scholar 

  151. X. Tan, B. Xie, J. Wang, W. He, X. Wang, and G. Wei, “County-scale spatial distribution of soil enzyme activities and enzyme activity indices in agricultural land: implications for soil quality assessment,” Sci. World J., 535768 (2014). https://doi.org/10.1155/2014/535768

  152. K. R. Tate, R. H. Wilde, D. J. Giltrap, W. T. Baisden, S. Saggar, N. A. Trustrum, N. A. Scott, and J. P. Barton, “Soil organic carbon stocks and flows in New Zealand: System development, measurement and modelling,” Can. J. Soil. Sci. 85, 481–489 (2005).

    Article  Google Scholar 

  153. F. Tesfay, K. Kibret, A. Gebrekirstos, and K. M. Hadgu, “Soil carbon and nitrogen stock and their spatial variability along an exclosure chronosequence at Kewet district, Central Dry Lowlands of Ethiopia,” Air, Soil Water Res. 15, 1–16 (2022). https://doi.org/10.1177/11786221221124546

    Article  Google Scholar 

  154. E. Tóth, I. Kisic, M. Galic, L. J. Telak, L. Brezinscak, I. Duga, M. Dencső, G. Gelybó, Z. Bakacsi, A. Horel, and I. Bogunovic, “Spatial mapping of soil respiration using auxiliary variables. A small scale study,” J. Cent. Eur. Agric. 22, 657–668 (2021). https://doi.org/10.5513/JCEA01/22.3.3227

    Article  Google Scholar 

  155. J. Turner and M. Lambert, “Change in organic carbon in forest plantation soils in eastern Australia,” For. Ecol. Manage. 133, 231–247 (2000).

    Article  Google Scholar 

  156. A. Walkley and I. A. Black, “An examination of the Degjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method,” Soil Sci. 37, 29–38 (1934).

    Article  Google Scholar 

  157. L. Wang, G. S. Okin, K. K. Caylor, and S. A. Macko, “Spatial heterogeneity and sources of soil carbon in southern African savannas,” Geoderma 149, 402–408 (2009). https://doi.org/10.1016/j.geoderma.2008.12.014

    Article  Google Scholar 

  158. S. Wang, L. Xu, Q. Zhuang, and N. He, “Investigating the spatio-temporal variability of soil organic carbon stocks in different ecosystems of China,” Sci. Total Environ. 758, 143644 (2021). https://doi.org/10.1016/j.scitotenv.2020.143644

    Article  Google Scholar 

  159. R. Webster and M. A. Oliver, Statistical Methods in Soil and Land Resource Survey (Oxford Univ. Press, Oxford, 1990).

    Google Scholar 

  160. W. W. Wenzel, O. Duboc, A. Golestanifard, C. Holzinger, K. Mayr, J. Reiter, and A. Schiefer, “Soil and land use factors control organic carbon status and accumulation in agricultural soils of Lower Austria,” Geoderma 409, 115595 (2022). https://doi.org/10.1016/j.geoderma.2021.115595

    Article  Google Scholar 

  161. M. Wiesmeier, F. Barthold, P. Spörlein, U. Geuß, E. Hangen, A. Reischl, B. Schilling, G. Angst, M. von Lützow, and I. Kögel-Knabner, “Estimation of total organic carbon storage and its driving factors in soils of Bavaria (southeast Germany),” Geoderma Reg. 1, 67–78 (2014). https://doi.org/10.1016/j.geodrs.2014.09.001

    Article  Google Scholar 

  162. M. Wiesmeier, L. Urbanski, E. Hobley, B. Lang, M. von Lützow, E. Marin-Spiotta, B. van Wesemael, E. Rabot, M. Ließ, N. Garcia-Franco, U. Wollschläger, H.-J. Vogel, and I. Kögel-Knabner, “Soil organic carbon storage as a key function of soils—a review of drivers and indicators at various scales,” Geoderma 333, 149–162 (2019). https://doi.org/10.1016/j.geoderma.2018.07.026

    Article  Google Scholar 

  163. S. Wuest, “Seasonal variation in soil organic carbon,” Soil Sci. Soc. Am. J. 78, 1442–1447 (2014). https://doi.org/10.2136/sssaj2013.10.0447

    Article  Google Scholar 

  164. S. B. Wuest, W. F. Schillinger, and S. Machado, “Variation in soil organic carbon over time in no-till versus minimum tillage dryland wheat-fallow,” Soil Tillage Res. 229, 105677 (2023). https://doi.org/10.1016/j.still.2023.105677

    Article  Google Scholar 

  165. E. Xie, Y. Zhang, B. Huang, Y. Zhao, X. Shi, W. Hu, and M. Qu, “Spatiotemporal variations in soil organic carbon and their drivers in southeastern China during 1981-2011,” Soil Tillage Res. 205, 104763 (2021). https://doi.org/10.1016/j.still.2020.104763

    Article  Google Scholar 

  166. X. Xiong, S. Grunwald, D. B. Myers, J. Kim, W. G. Harris, and N. Bliznyuk, “Assessing uncertainty in soil organic carbon modeling across a highly heterogeneous landscape,” Geoderma 251–252, 105–116 (2015). https://doi.org/10.1016/j.geoderma.2015.03.028

    Article  Google Scholar 

  167. F. Yang, J. Tiana, H. Fanga, Y. Gaoa, X. Zhanga, G. Yua, and Y. Kuzyakov, “Spatial heterogeneity of microbial community and enzyme activities in a broad-leaved Korean pine mixed forest,” Eur. J. Soil Biol. 88, 65–72 (2018). https://doi.org/10.1016/j.ejsobi.2018.07.001

    Article  Google Scholar 

  168. P. Yang, J. M. Byrne, and M. Yang, “Spatial variability of soil magnetic susceptibility, organic carbon and total nitrogen from farmland in northern China,” Catena 145, 92–98 (2016). https://doi.org/10.1016/j.catena.2016.05.025

    Article  Google Scholar 

  169. D.-S. Yu, Z.-Q. Zhang, H. Yang, X.-Z. Shi, M.-Z. Tan, W.-X. Sun, and H.-J. Wang, “Effect of soil sampling density on detected spatial variability of soil organic carbon in a red soil region of China,” Pedosphere 21, 207–213 (2011).

    Article  Google Scholar 

  170. W. A. N. G. Yun-Qiang, X. C. Zhang, J. L. Zhang, and L. I. Shun-Ji, “Spatial variability of soil organic carbon in a watershed on the Loess Plateau,” Pedosphere 19, 486–495 (2009). https://doi.org/10.1016/S1002-0160(09)60141-7

    Article  Google Scholar 

  171. P. Zhang, Y. Wang, L. Xu, H. Sun, R. Li, and J. Zhou, “Factors controlling the spatial variability of soil aggregates and associated organic carbon across a semi-humid watershed,” Sci. Total Environ. 809, 151155 (2022). https://doi.org/10.1016/j.scitotenv.2021.151155

    Article  Google Scholar 

  172. S. Zhang, X. Zhang, Z. Liu, Y. Sun, W. Liu, L. Dai, and S. Fu, “Spatial heterogeneity of soil organic matter and soil total nitrogen in a Mollisol watershed of Northeast China,” Environ. Earth Sci. 72, 275–288 (2014). https://doi.org/10.1007/s12665-014-3081-4

    Article  Google Scholar 

  173. W. Zhao, T. Cao, Z. Li, M. Luo, and Y. Su, “Spatial variability of soil organic matter in a gravel-sand mulched jujube orchard at field scale,” Arabian J. Geosci. 13, 446 (2020). https://doi.org/10.1007/s12517-020-05465-w

    Article  Google Scholar 

  174. Y. C. Zhao and X. Z. Shi, “Spatial prediction and uncertainty assessment of soil organic carbon in Hebei Province, China,” in Digital Soil Mapping. Progress in Soil Science 2 (Springer Science + Business Media B.V., New York, 2010), pp. 227–239. https://doi.org/10.1007/978-90-481-8863-5_19

Download references

ACKNOWLEDGMENTS

The authors thank T.A. Arkhangel’skaya, V.P. Samsonova, S.N. Chukov, Yu.L. Meshalkina, and unknown reviewers for helpful criticism and suggestions on the revision of the manuscript.

Funding

The work was supported by a part of the most important innovative project of national importance titled “Development of a System for Ground-Based and Remote Monitoring of Carbon Pools and Greenhouse Gas Fluxes in the Territory of the Russian Federation Ensuring the Creation of Data Recording Systems on the Fluxes of Climate-Active Substances and the Carbon Budget in Forests and Other Terrestrial Ecological Systems” (registration no. 123030300031-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. B. Khitrov.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

CONSENT TO PARTICIPATE

Informed consent was obtained from all individual participants included in the study.

Additional information

Translated by G. Chirikova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khitrov, N.B., Nikitin, D.A., Ivanova, E.A. et al. Variability of the Content and Stock of Soil Organic Matter in Time and Space: An Analytical Review. Eurasian Soil Sc. 56, 1819–1844 (2023). https://doi.org/10.1134/S106422932360207X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106422932360207X

Keywords:

Navigation