Skip to main content
Log in

Species-Abundance Distributions of Soil Ciliates on Different Aspects in Alpine Meadows of Gannan, China

  • SOIL BIOLOGY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Species-abundance distribution (SAD) is essential in understanding the formation and maintenance mechanisms of species diversity. In alpine meadows, aspect affects almost all biological and ecological processes. Therefore, the soil ciliate data obtained by Illumina MiSeq sequencing were used to explore the characteristics of SADs to the soil ciliate communities on different aspects in alpine meadows (south aspect, southwest aspect, west aspect, northwest aspect, north aspect; SA, SWA, WA, NWA, NA, respectively). Statistical models: Log-series model (LSM) and Log-normal model (LNORM), Niche models: Broken stick model (BSM) and Geometric series model (GSM), and a neutral theory model: Meta-community zero-sum multinomial distribution model (MZSM) were selected to fit the soil ciliate data for analysis. The results showed that: (1) the number of common species increased and then decreased from SA to NA, the number of rare species changed in the opposite trend; (2) BSM and GSM were able to fit the SAD of overall soil ciliates species on different aspects, while MZSM was rejected on all aspects, indicating that the niche process dominated the formation of soil ciliate communities in the alpine meadows, and the resource allocation pattern was dominated by fixed allocation; (3) best-fit models for common species were GSM and BSM which were consistent with best-fit models for all species, while the best-fit model for rare species was LNORM, common species dominated the formation of SAD on different aspects and had an irreplaceable role in maintaining community productivity and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. A. Rekik, S. Kmiha-Megdiche, Z. Drira, M. Pagano, H. Ayadi, A. B. Zouari, and J. Elloumi, “Spatial variations of planktonic ciliates, predator-prey interactions and their environmental drivers in the Gulf of Gabes-Boughrara lagoon system,” Estuarine, Coastal Shelf Sci. 254, 107315 (2021). https://doi.org/10.1016/j.ecss.2021.107315

    Article  Google Scholar 

  2. A. V. Chramov, L. V. Kontrosh, D. V. Makarov, and O. I. Shumilov, “Ecotoxicity responses of ciliates Paramecium Bursaria to trace metals and rare-earth elements,” Int. J. Environ. Stud., 1–8 (2021). https://doi.org/10.1080/00207233.2021.1974194

  3. B. J. McGill, R. S. Etienne, J. S. Gray, D. Alonso, M. J. Anderson, H. K. Benecha, M. Dornelas, B. J. Enquist, J. L. Green, F. He, A. H. Hurlbert, A. E. Magurran, P. A. Marquet, B. A. Maurer, A. Ostling, C. U. Soykan, K. I. Ugland, and E. P. White, “Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework,” Ecol. Lett. 10 (10), 995–1015 (2007). https://doi.org/10.1111/j.1461-0248.2007.01094.x

    Article  Google Scholar 

  4. C. A. Nsor, R. Acolatse, J. N. Mensah, S. K. Oppong, D. Dompreh, and L. Addai-Wireko, “Structural assemblages of plant species in the Owabi Ramsar Wetland in the Ashanti Region of Ghana,” Afr. J. Aquat. Sci. 47 (1), 100–114 (2022). https://doi.org/10.2989/16085914.2021.1982671

    Article  Google Scholar 

  5. C. J. Chu, Y. S. Wang, G. Z. Du, F. T. Maestre, Y. J. Luo, and G. Wang, “On the balance between niche and neutral processes as drivers of community structure along a successional gradient: insights from alpine and sub-alpine meadow communities,” Ann. Bot. 100 (4), 807–812 (2007). https://doi.org/10.1093/aob/mcm166

    Article  Google Scholar 

  6. C. Xu, Z. Wang, Z. Li, L. Wang, and G. Han, “Grazing intensity and climate factors shape species abundance distribution by influencing different components of plant communities in a desert steppe,” Ecol. Res. 34 (6), 730–742 (2019). https://doi.org/10.1111/1440-1703.12047

    Article  Google Scholar 

  7. C. Zhang, M. X. Liu, and R. Li, “Response of soil ciliates community in cold and warmseasons to slope aspects of subalpine meadow in Gannan,” J. Ecol. 36 (09), 2465–2472 (2017). Doi: https://doi.org/10.13292/j.1000-4890.201709.003

    Article  Google Scholar 

  8. D. S. Yang, D. D. Xu, Y. H. Pu, Y. Q. Liu, and J. Q. Zhu, “Responses of subalpine meadow to climatic factors and the time lag effects in Wuyi Mountains from 2000 to 2019,” J. Appl. Ecol. 32 (12), 4195–4202 (2021). https://doi.org/10.13287/j.1001-9332.202112.001

    Article  Google Scholar 

  9. E. Lara, C. Berney, H. Harms, and A. Chatzinotas, “Cultivation-independent analysis reveals a shift in ciliate 18S-rRNA gene diversity in a polycyclic aromatic hydrocarbon-polluted soil,” FEMS Microbiol. Ecol. 62 (3), 365–373 (2007). https://doi.org/10.1111/j.1574-6941.2007.00387.x

    Article  Google Scholar 

  10. G. C. Küppers, M. E. Bazzuri, N. C. Neschuk, and M. C. Claps, “Impact of El Niño-Southern Oscillation on plankton ciliates from a saline lowland river in South America,” Aquat. Microb. Ecol. 88, 43–59 (2022). https://doi.org/10.3354/ame01980

    Article  Google Scholar 

  11. H. Liu, Y. Ning, Y. Yang, L. Wang, L. Chen, Y. Wanma, and X. Shen, “Use of ciliate communities for monitoring ecological restoration of grain for the green in north-western China,” Soil Ecol. Lett. 4 (3), 264–275 (2022). https://doi.org/10.1007/s42832-021-0105-3

    Article  Google Scholar 

  12. J. A. Lee-Yaw, J. L. McCune, S. Pironon, and S. N. Sheth, “Species distribution models rarely predict the biology of real populations,” Ecography 2022 (6), e05877 (2022). https://doi.org/10.1111/ecog.05877

    Article  Google Scholar 

  13. J. Béguinot, “A universal key to rationally select which, among nonparametric species richness estimators, performs best according to each particular incomplete sampling,” Annu. Res. Rev. Biol., 30–46 (2022). Doi:https://doi.org/10.9734/arrb/2022/v37i430500

  14. J. S. Abraham, S. Sripoorna, J. Dagar, S. Jangra, A. Kumar, A. Yadav, S. Singh, A. Goyal, S. Maurya, G. Gambhir, R. Toteja, D. K. Singh, H. S. Serehy, A. Al-Misned, S. A. Al-Farraj, K. A. Al-Rasheid, S. A. Maodaa, and S. Makhija, “Soil ciliates of the Indian Delhi Region: their community characteristics with emphasis. on their ecological implications as sensitive bio-indicators for soil quality,” Saudi J. Biol. Sci. 26 (6), 1305–1313 (2019). https://doi.org/10.1016/j.sjbs.2019.04.013

    Article  Google Scholar 

  15. K. Fukaya, B. Kusumoto, T. Shiono, J. Fujinuma, and Y. Kubota, “Integrating multiple sources of ecological data to unveil macroscale species abundance,” Nat. Commun. 11 (1), 1–14 (2020). https://doi.org/10.1038/s41467-020-15407-5

    Article  Google Scholar 

  16. K. Nishizawa, N. Shinohara, M. W. Cadotte, and A. S. Mori, “The latitudinal gradient in plant community assembly processes: a meta-analysis,” Ecol. Lett. 25 (7), 1711–1724 (2022). https://doi.org/10.1111/ele.14019

    Article  Google Scholar 

  17. L. H. Antão, A. E. Magurran, and M. Dornelas, “The shape of species-abundance distributions across spatial scales,” Front. Ecol. Evol. 9, 184 (2021). https://doi.org/10.3389/fevo.2021.626730

    Article  Google Scholar 

  18. L. Huang, H. Yang, X. An, Y. Yu, G. Huang, X. Liu, M. Chen, and Y. Xue, “Species abundance distributions patterns between tiankeng forests and nearby non-tiankeng forests in Southwest China,” Diversity 14 (2), 64 (2022). https://doi.org/10.3390/d14020064

    Article  Google Scholar 

  19. L. Poorter, M. T. Vander-Sande, E. J. Arets, N. Ascarrunz, B. J. Enquist, B. Finegan, J. C. Licona, M. Martínez-Ramos, L. Mazzei, J. A. Meave, R. Muñoz, C. J. Nytch, A. A. De Oliveira, E. A. Pérez-García, J. Prado-Junior, J. Rodríguez-Velázques, A. R. Ruschel, B. Salgado-Negret, I. Schiavini, N. G. Swenson, E. A. Tenorio, J. Thompson, M. Toledo, M. Uriarte, J. K. Zimmerman, and M. Peña-Claros, “Biodiversity and climate determine the functioning of Neotropical forests,” Global Ecol. Biogeogr. 27 (3), 389–390 (2018). https://doi.org/10.1111/geb.12721

    Article  Google Scholar 

  20. M. T. Farr, D. S. Green, K. E. Holekamp, and E. F. Zipkin, “Integrating distance sampling and presence-only data to estimate species abundance,” Ecology 102 (1), e03204 (2021). https://doi.org/10.1002/ecy.3204

    Article  Google Scholar 

  21. N. Deng, Q. Song, F. Ma, and Y. Tian, “Patterns and driving factors of diversity in the shrub community in Central and Southern China,” Forests 13 (7), 1090 (2022). https://doi.org/10.3390/f13071090

    Article  Google Scholar 

  22. R. A. Fisher, A. S. Corbet, and C. B. Williams, “The relation between the number of species and the number of individuals in a random sample of an animal population,” J. Anim. Ecol. 12, 42–58 (1943). https://doi.org/10.2307/1411

    Article  Google Scholar 

  23. R. C. Burner, L. Drag, J. G. Stephan, T. Birkemoe, R. Wetherbee, J. Muller, J. Siitonen, T. Snäll, O. Skarpaas, M. Potterf, I. Doerfler, M. M. Gossner, P. Schall, W. W. Weisser, and A. Sverdrup-Thygeson, “Functional structure of European forest beetle communities is enhanced by rare species,” Biol. Conserv. 267, 109491 (2022). https://doi.org/10.1016/j.biocon.2022.109491

    Article  Google Scholar 

  24. R. Core Team, R: a Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2019). https://www.R-project.org/.

  25. R. H. MacArthur, “On the relative abundance of bird species,” Proc. Natl. Acad. Sci. U. S. A. 43 (3), 293–295 (1957). https://doi.org/10.1073/pnas.43.3.293

    Article  Google Scholar 

  26. R. Pastorelli, M. A. Cucu, A. Lagomarsino, A. Paletto, and I. D. Meo, “Analysis of ciliate community diversity in decaying Pinus nigra logs,” Forests 13 (5), 642 (2022). https://doi.org/10.3390/f13050642

    Article  Google Scholar 

  27. S. Maurya, J. S. Abraham, S. Somasundaram, Sandeep, J. Dagar, R. Gupta, S. Makhija, P. Bhagat, and R. Toteja, “A comparative study of physical and chemical parameters and ciliate diversity of leachate contaminated soil from the landfill and the soil from the human inhabitant land,” Eurasian Soil Sci., 1–12 (2022). https://doi.org/10.1134/S1064229322080117

  28. S. Zhang, R. Zang, and D. Sheil, “Rare and common species contribute disproportionately to the functional variation within tropical forests,” J. Environ. Manage. 304, 114332 (2022). https://doi.org/10.1016/j.jenvman.2021.114332

    Article  Google Scholar 

  29. T. J. Matthews and R. J. Whittaker, “Fitting and comparing competing models of the species abundance distribution: assessment and prospect,” Front. Biogeogr. 6 (2), (2014). https://doi.org/10.21425/F5FBG20607

  30. T. J. Matthews and R. J. Whittaker, “On the species abundance distribution in applied ecology and biodiversity management,” J. Appl. Ecol. 52 (2), 443–454 (2015). https://doi.org/10.1111/1365-2664.12380

    Article  Google Scholar 

  31. T. J. Matthews, P. A. Borges, E. B. de-Azevedo, and R. J. Whittaker, “A biogeographical perspective on species abundance distributions: recent advances and opportunities for future research,” J. Biogeogr. 44 (8), 1705–1710 (2017). https://doi.org/10.1111/jbi.13008

    Article  Google Scholar 

  32. T. Mikhail, P. Alexander, and N. Ludmila, “Fauna of ciliates (Alveolata, Ciliophora) of the southern part of the Russian Far East,” Protistology 16 (21), 09–121 (2022). https://doi.org/10.21685/1680-0826-2022-16-2-5

  33. T. Mutsunori, “Species abundance patterns and community structure,” Adv. Ecol. Res. 24, 111–186 (1993). https://doi.org/10.1016/S0065-2504(08)60042-2

    Article  Google Scholar 

  34. T. Siqueira, L. M. Bini, F. O. Roque, S. R. Couceiro, S. Trivinho-Strixino, and K. Cottenie, “Common and rare species respond to similar niche processes in macroinvertebrate metacommunities,” Ecography 35 (2), 183–192 (2012). https://doi.org/10.1111/j.1600-0587.2011.06875.x

    Article  Google Scholar 

  35. W. Godsoe, P. J. Bellingham, and E. Moltchanova, “Disentangling niche theory and beta diversity change,” Am. Nat. 199 (4), 510–522 (2022). https://doi.org/10.5061/dryad.sxksn033s

    Article  Google Scholar 

  36. W. Ulrich, B. Kusumoto, T. Shiono, and Y. Kubota, “Climatic and geographic correlates of global forest tree species–abundance distributions and community evenness,” J. Veg. Sci. 27 (2), 295–305 (2016). https://doi.org/10.1111/jvs.12346

    Article  Google Scholar 

  37. W. Ulrich, T. J. Matthews, I. Biurrun, J. A. Campos, P. Czortek, I. Dembicz, F. Essl, G. P. Galdo, B. Güler, A. Naqinezhad, P. Török, and J. Dengler, “Environmental drivers and spatial scaling of species abundance distributions in Palaearctic grassland vegetation,” Ecology 103 (8), e3725 (2022). https://doi.org/10.1002/ecy.3725

    Article  Google Scholar 

  38. W. Wu, J. Dong, Y. Long, A. Warren, l. Chen, and H. Qiu, “Redescription and phylogenetic position of the terrestrial ciliates Gastrostylides dorsicirratus and Heterourosomoida lanceolatae (Hypotricha, Dorsomarginali-a),” Eur. J. Protistol. 82, 125859 (2022). https://doi.org/10.1016/j.ejop.2021.125859

    Article  Google Scholar 

  39. X. E. Li, X. Song, J. Zhao, H. Lu, C. Qian, and X. Zhao, “Shifts and plasticity of plant leaf mass per area and leaf size among slope aspects in a subalpine meadow,” Ecol. Evol. 11 (20), 14042–14055 (2021). https://doi.org/10.1002/ece3.8113

    Article  Google Scholar 

  40. Y. Jiang, Z. Wang, C. Chu, S. W. Kembel, and F. He, “Phylogenetic dependence of plant-soil feedback promotes rare species in a subtropical forest,” J. Ecol. 110, 1237–1246 (2022). https://doi.org/10.1111/1365-2745.13879

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We sincerely appreciate the Research Station of Alpine Meadow and Wetland Ecosystems of Lanzhou University for providing the field experiment site. We also thank the National Natural Science Foundation of China (31760135), the Gansu Provincial Natural Science Foundation (20JR10RA089), and the Gansu Provincial Forestry and grassland science and technology innovation (KJCX2021005) for providing financial support.

Author information

Authors and Affiliations

Authors

Contributions

Chunliang Yang: conceptualization, writing-original draft; Minxia Liu: funding acquisition, review, and editing; Xiaowen Wang: methodology, software.

Corresponding author

Correspondence to Minxia Liu.

Ethics declarations

ADDITIONAL INFORMATION

Data will be made available on request.

DECLARATION OF COMPETING INTEREST

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Liu, M. & Wang, X. Species-Abundance Distributions of Soil Ciliates on Different Aspects in Alpine Meadows of Gannan, China. Eurasian Soil Sc. 56 (Suppl 2), S325–S336 (2023). https://doi.org/10.1134/S1064229323602044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229323602044

Keywords:

Navigation