Skip to main content
Log in

Organic Matter Content and Standard Material Decomposition Rate in Soils of High-Mountain Plant Communities of the Teberda National Park

  • SOIL CHEMISTRY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Soils of high mountains significantly differ in the soil organic matter (SOM) content, but the factors of such diversity are still not completely known. We have studied physicochemical and microbiological soil properties and have estimated parameters of standard material decomposition based on the Tea bag index (TBI)—stabilization factor (STBI) and decomposition constant (kTBI)—in 16 subalpine, alpine, and subnival plant communities of the Teberda National Park (northwestern Caucasus) We tested the following hypotheses: (1) SOM is one of predictors of STBI and kTBI in the high-mountain zone along with other physicochemical soil properties; (2) the SOM content is greater at high STBI and low kTBI; (3) the SOM content correlates with belowground plant productivity. The main gradients of the studied soils include moisture content (automorphic vs. hydromorphic soils) and the concurrent SOM accumulation, as well as the altitudinal gradient (a decrease of soil basal respiration with altitude). The enrichment in nitrogen (e.g. the SOM quality) of the labile fraction is the best predictor of the decomposition rate. The parameter STBI decreases with the increase in the total carbon content and loss on ignition, while the correlation between kTBI and SOM is positive only in automorphic soils. Thus, the soils rich in organic matter are characterized by low stabilization factor and relatively high decomposition rate. The SOM content in plant communities with herbaceous dominants is in positive correlation with the production of fine roots, which reflects the important role of productivity in organic matter accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. O. S. Vertelina, V. G. Onipchenko, and M. I. Makarov, “Primary minerals and weathering processes in high-mountain soils of the Teberda Nature Reserve,” Vestn. Mosk. Univ., Ser. 17: Pochvoved., No. 1, 3–10 (1996).

  2. Classification and Diagnosis of Russian Soils (Oikumena, Smolensk, 2004) [in Russian].

  3. M. I. Makarov, A. V. Volkov, T. I. Malysheva, and V. G. Onipchenko, “Phosphorus, nitrogen and carbon in soils of the subalpine and alpine zones of the Teberda Nature Reserve,” Pochvovedenie, No. 1, 62–71 (2001).

    Google Scholar 

  4. V. M. Semenov, A. S. Tulina, N. A. Semenova, and L. A. Ivannikova, “Humification and nonhumification pathways of the organic matter stabilization in soil: a review,” Eurasian Soil Sci. 46 (4), 355–368 (2013). https://doi.org/10.1134/S106422931304011X

    Article  Google Scholar 

  5. K. Bartoń, MuMIn: Multi-Model Inference. R package version 1.40.0. 2017. https://CRAN.R-project.org/ package=MuMIn

  6. I. Basile-Doelsch, J. Balesdent, and S. Pellerin, “The mechanisms underlying carbon storage in soil,” Biogeoscience 17, 5223–5242 (2020). https://doi.org/10.5194/bg-17-5223-2020

    Article  Google Scholar 

  7. G. Blume-Werry, V. Di Maurizio, I. Beil, S. Lett, S. Schwieger, and J. Kreyling, “Don’t drink it, bury it: comparing decomposition rates with the tea bag index is possible without prior leaching,” Plant Soil 465, 613–621 (2021). https://doi.org/10.1007/s11104-021-04968-z

    Article  Google Scholar 

  8. A. Bohner, J. Karrer, R. Walcher, D. Brandl, K. Michel, A. Arnberger, T. Frank, and J. G. Zaller, “Ecological responses of semi-natural grasslands to abandonment: case studies in three mountain regions in the Eastern Alps,” Folia Geobot. 54, 211–225 (2019). https://doi.org/10.1007/s12224-019-09355-2

    Article  Google Scholar 

  9. L.-F. Chen, Z.-B. He, J. Du, J.-J. Yang, and X. Zhu, “Patterns and environmental controls of soil organic carbon and total nitrogen in alpine ecosystems of northwestern China,” Catena 137, 37–43 (2016). https://doi.org/10.1016/j.catena.2015.08.017

    Article  Google Scholar 

  10. L. Cheng, W. Chen, T. Adams, X. Wei, L. Li, M. L. Mccormack, J. L. Deforest, R. T. Koide, and D. M. Eissenstat, “Mycorrhizal fungi and roots are complementary in foraging within nutrient patches,” Ecology 97, 2815–2823 (2016). https://doi.org/10.1002/ecy.1514

    Article  Google Scholar 

  11. W. Cheng and Y. Kuzyakov, “Root effects on soil organic matter decomposition,” in Roots and Soil Management: Interactions between Roots and the Soil (Agronomy Monograph, 2005), Vol. 48, pp. 119–143.

    Google Scholar 

  12. E. A. Davidson and I. A. Janssens, “Temperature sensitivity of soil carbon decomposition and feedbacks to climate change,” Nature 440, 165–173 (2006). https://doi.org/10.1038/nature04514

    Article  Google Scholar 

  13. F. A. Dijkstra, B. Zhu, and W. Cheng, “Root effects on soil organic carbon: a double-edged sword,” New Phytol. 230, 60–65 (2021).

    Article  Google Scholar 

  14. I. Djukic, F. Zehetner, M. Tatzber, and M. H. Gerzabek, “Soil organic-matter stocks and characteristics along an Alpine elevation gradient,” J. Plant Nutr. Soil Sci. 173, 30–38 (2010). https://doi.org/10.1002/jpln.200900027

    Article  Google Scholar 

  15. R. A. Dorich and D. W. Nelson, “Evaluation of manual cadmium reduction methods for determination of nitrate in potassium chloride extracts of soils,” Soil Sci. Soc. Am. J. 48, 72‒75 (1984).

    Article  Google Scholar 

  16. M. Egli, G. Sartori, A. Mirabella, F. Favilli, D. Giaccai, and E. Delbos, “Effect of north and south exposure on organic matter in high Alpine soils,” Geoderma 149, 124–136 (2009). https://doi.org/10.1016/j.geoderma.2008.11.027

    Article  Google Scholar 

  17. T. G. Elumeeva, V. G. Onipchenko, A. A. Akhmetzhanova, M. I. Makarov, and J. A. Keuskamp, “Stabilization versus decomposition in alpine ecosystems of the Northwestern Caucasus: the results of a tea bag burial experiment,” J. Mt. Sci. 15, 1633–1641 (2018). https://doi.org/10.1007/s11629-018-4960-z

    Article  Google Scholar 

  18. T. G. Elumeeva, V. G. Onipchenko, J. H. C. Cornelissen, G. V. Semenova, L. G. Perevedentseva, G. T. Freschet, R. S. P. van Logtestijn, and N. A. Soudzilovskaia, “Is intensity of plant root mycorrhizal colonization a good proxy for plant growth rate, dominance and decomposition in nutrient poor conditions,” J. Veg. Sci. 29, 715–725 (2018b). https://doi.org/10.1111/jvs.12651

    Article  Google Scholar 

  19. N. Fanin, S. Bezaud, J. M. Sarneel, S. Cecchini, M. Nicolas, and L. Augusto, “Relative importance of climate, soil and plant functional traits during the early decomposition stage of standardized litter,” Ecosystems 23, 1004–1007 (2020). https://doi.org/10.1007/s10021-019-00452-z

    Article  Google Scholar 

  20. S. Fontaine, A. Mariotti, and L. Abbadie, “The priming effect of organic matter: a question of microbial competition?,” Soil Biol. Biochem. 35, 837–843 (2003).

    Article  Google Scholar 

  21. J. Fox and S. Weisberg, An {R} Companion to Applied Regression, 3rd Ed. (Sage, Thousand Oaks, 2019). https://socserv.socsci.mcmaster.ca/jfox/Books/Companion.

    Google Scholar 

  22. G. T. Freschet, W. K. Cornwell, D. A. Wardle, T. G. Elumeeva, W. Liu, B. G. Jackson, V. G. Onipchenko, N. A. Soudzilovskaia, J. Tao, and J. H. C. Cornelissen, “Linking litter decomposition of above- and below-ground organs to plant-soil feedbacks worldwide,” J. Ecol. 101, 943–952 (2013). https://doi.org/10.1111/1365-2745.12092

    Article  Google Scholar 

  23. E. A. Ghabbour, G. Davies, N. P. Cuozzo, and R. O. Miller, “Optimized conditions for determination of total soil organic matter in diverse samples by mass loss on ignition,” J. Plant Nutr. Soil Sci. 177, 914–919 (2014). https://doi.org/10.1002/jpln.201400326

    Article  Google Scholar 

  24. S. E. Hobbie, “Temperature and plant species control over litter decomposition in Alaskan tundra,” Ecol. Monogr. 66, 503–522 (1996).

    Article  Google Scholar 

  25. U. Hoffmann, T. Hoffmann, G. Jurasinski, S. Glatzel, and N. J. Kuhn, “Assessing the spatial variability of soil organic carbon stocks in an alpine setting (Grindelwald, Swiss Alps),” Geoderma 232–234, 270–283 (2014). https://doi.org/10.1016/j.geoderma.2014.04.038

    Article  Google Scholar 

  26. L. M. Jacobs, B. N. Sulman, E. R. Brzostek, J. J. Feighery, and R. P. Philips, “Interactions among decaying leaf litter, root litter and soil organic matter vary with mycorrhizal type,” J. Ecol. 106, 502–513 (2018). https://doi.org/10.1111/1365-2745.12921

    Article  Google Scholar 

  27. E. Kandeler, “Ammonium,” in Methods in Soil Biology (Springer-Verlag, Berlin, Heidelberg, 1996), pp. 406‒408.

    Google Scholar 

  28. J. A. Keuskamp, B. J. J. Dingemans, T. Lehtinen, J. M. Sarneel, and M. M. Hefting, “Tea Bag Index: a novel approach to collect uniform decomposition data across ecosystems,” Methods Ecol. Evol. 4, 1070–1075 (2013). https://doi.org/10.1111/2041-210X.12097

    Article  Google Scholar 

  29. M. U. F. Kirschbaum, “The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic storage,” Soil Biol. Biochem. 27, 753–760 (1995). https://doi.org/10.1016/0038-0717(94)00242-S

    Article  Google Scholar 

  30. J. Kopáček, J. Kaňa, and H. Šantrůčková, “Pools and composition of soils in the alpine zone of the Tatra Mountains,” Biologia (Bratislava) 61 (18), 35–49 (2006). https://doi.org/10.2478/s11756-006-0118-5

    Article  Google Scholar 

  31. S. I. Lang, J. H. C. Cornelissen, T. Klahn, R. S. P. van Logtestijn, R. Broekman, W. Schweikert, and R. Aerts, “An experimental comparison of chemical traits and litter decomposition rates in a diverse range of subarctic bryophyte, lichen and vascular plant species,” J. Ecol. 97, 886–900 (2009). https://doi.org/10.1111/j.1365-2745.2009.01538.x

    Article  Google Scholar 

  32. J. Lehmann, C. M. Hansel, C. Kaiser, M. Kleber, K. Maher, S. Manzoni, N. Nunan, M. Reichstein, et al., “Persistence of soil organic carbon caused by functional complexity,” Nat. Geosci. 13, 529–534 (2020). https://doi.org/10.1038/s41561-020-0612-3

    Article  Google Scholar 

  33. T. I. Malysheva, V. G. Onipchenko, M. I. Makarov, A. V. Volkov, and I. V. Bulatnikova, “Soils and nutrient turnover,” in Alpine Ecosystems in the Northwestern Caucasus (Kluwer, Dordrecht, 2004), pp. 9–24.

    Google Scholar 

  34. S. E. L. Moar and S. D. Wilson, “Root responses to nutrient patches in grassland and forest,” Plant Ecol. 184, 157–162 (2006). https://doi.org/10.1007/s11258-005-9059-2

    Article  Google Scholar 

  35. P. Mueller, L. M. Schile-Beers, T. J. Mozdzer, G. L. Chmura, T. Dinter, Y. Kuzyakov, A. V. de Groot, P. Esselink, et al., “Global-change effects on early-stage decomposition processes in tidal wetlands – implications from a global survey using standardized litter,” Biogeosciences 15, 3189–3202 (2018).

    Article  Google Scholar 

  36. S. Nakagawa and H. Schielzeth, “A general and simple method for obtaining R 2 from generalized linear mixed-effects models,” Methods Ecol. Evol. 4, 133–142 (2013). https://doi.org/10.1111/j.2041-210x.2012.00261.x

    Article  Google Scholar 

  37. T. Ohtsuka, M. Hirota, X. Zhang, A. Shimono, Y. Senga, M. Du, S. Yonemura, S. Kawashima, and Y. Tang, “Soil organic carbon pools in alpine to nival zones along an altitudinal gradient (4400–5300 m) on the Tibetan Plateau,” Polar Sci. 2, 277–285 (2008). https://doi.org/10.1016/j.polar.2008.08.003

    Article  Google Scholar 

  38. J. Oksanen, F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P. R. Minchin, R. B. O' Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens, E. Szoecs, and H. Wagner, vegan: Community Ecology Package. R package version 2.5-7 (2020). https://CRAN.R-project.org/package=vegan.

  39. V. G. Onipchenko, Alpine Vegetation of the Teberda Reserve, the Northwestern Caucasus. Veröffentlichungen des Geobotanischen Institutes der ETH. Heft 130 (Stiftung Rübel, Zürich, 2002).

    Google Scholar 

  40. V. G. Onipchenko, “Geography, geology, climate and the communities studied,” in Alpine Ecosystems in the Northwestern Caucasus (Kluwer, Dordrecht, 2004), pp. 1–8.

    Book  Google Scholar 

  41. V. G. Onipchenko, D. M. Gulov, A. R. Ishbirdin, M. I. Makarov, A. A. Akhmetzhanova, O. A. Logvinenko, O. P. Khubieva, D. K. Tekeev, and T. G. Elumeeva, “Analysis of fine root production features in high mountain communities by ingrowth method using filter balls,” Contemp. Probl. Ecol. 14, 456–464. https://doi.org/10.1134/S1995425521050085

  42. A. Petraglia, C. Cacciatori, S. Chelli, G. Fenu, G. Calderisi, D. Gargano, T. Abeli, S. Orsenigo, and M. Carboniani, “Litter decomposition: effects of temperature driven by soil moisture and vegetation type,” Plant Soil 435, 187–200 (2019). https://doi.org/10.1007/s11104-018-3889-x

    Article  Google Scholar 

  43. J. Pinheiro, D. Bates, S. DebRoy, and D. Sarkar, R Core Team. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-152 (2021). http://CRAN.R-project.org/package=nlme.

  44. D. Pierson, L. Evans, K. Kayhani, R. D. Bowden, K. Nadelhoffer, M. Simpson, and K. Laitha, “Mineral stabilization of soil carbon is suppressed by live roots, outweighting influences from litter quality or quantity,” Biogeochem. Lett. 154, 433–449 (2021). https://doi.org/10.1007/s10533-021-00804-9

    Article  Google Scholar 

  45. V. Poirier, C. Roumet, and A. D. Munson, “The root of matter: linking root traits and soil organic matter stabilization processes,” Soil Biol. Biochem. 120, 246–259 (2018). https://doi.org/10.1016/j.soilbio.2018.02.016

    Article  Google Scholar 

  46. C. E. Prescott, “Litter decomposition: what controls it and how we can alter it to sequester more carbon to forest soils?,” Biogeochemistry 101, 133–149 (2010). https://doi.org/10.1007/s10533-010-9439-0

    Article  Google Scholar 

  47. T. Pohler, The Pairwise Multiple Comparison of Mean Ranks Package (PMCMR). R package (2014). http:// CRAN.R-project.org/package=PMCMR.

  48. W. J. Rawls, Y. A. Pachepsky, J. C. Ritchie, T. M. Sobecki, and H. Bloodworth, “Effect of soil organic carbon on soil water retention,” Geoderma 116, 61–76 (2003). https://doi.org/10.1016/S0016-7061(03)00094-6

    Article  Google Scholar 

  49. M. C. Rowley, S. Grand, and E. Verrecchia, “Calcium-mediated stabilization of soil organic carbon,” Biogeochemistry 137, 27–49 (2018). https://doi.org/10.1007/s10533-017-0410-1

    Article  Google Scholar 

  50. R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing (Vienna, 2021). https://www.R-project.org/.

  51. T. Sandén, H. Spiegel, H. Wenng, M. Schwarz, and J. M. Sarneel, “Learning science during teatime: using a citizen science approach to collect data on litter decomposition in Sweden and Austria,” Sustainability 12, 7745 (2020). https://doi.org/10.3390/su12187745

    Article  Google Scholar 

  52. J. Sarneel, M. K. Sundkvist, U. Molau, M. P. Björkman, and J. M. Alatalo, “Decomposition rate and stabilization across six tundra vegetation types exposed to >20 years of warming,” Sci. Total Environ. 724, 138304 (2020). https://doi.org/10.1016/j.scitotenv.2020.138304

    Article  Google Scholar 

  53. M. W. I. Schmidt, M. S. Torn, S. Abiven, T. Dittmar, G. Guggenberger, I. A. Janssens, M. Kleber, I. Kögel-Knabner, J. Lehmann, D. A. Manning, P. Nannipieri, D. P. Rasse, S. Weiner, and S. E. Trumbore, “Persistence of soil organic matter as an ecosystem property,” Nature 478, 49–56 (2011).

    Article  Google Scholar 

  54. J. Six, R. T. Conant, E. A. Paul, and K. Paustian, “Stabilization mechanisms of soil organic matter: implications for C-saturation of soils,” Plant Soil 241, 155–176 (2002). https://doi.org/10.1023/A:1016125726789

    Article  Google Scholar 

  55. M. V. Sørensen, R. Strimbeck, K. O. Nystuen, R. E. Kapas, B. J. Enquist, and B. J. Graae, “Draining the pool? Carbon storage and fluxes in three alpine plant communities,” Ecosystems 21, 316–330 (2018). https://doi.org/10.1007/s10021-017-0158-4

    Article  Google Scholar 

  56. U. Stockmann, M. A. Adams, J. W. Crawford, D. J. Field, N. Henakaarchchi, M. Jenkins, B. Minasny, A. B. McBratney, et al., “The knowns, known unknowns and unknowns of sequestration of soil organic carbon,” Agric., Ecosyst. Environ. 164, 80–99 (2013). https://doi.org/10.1016/j.agee.2012.10.001

    Article  Google Scholar 

  57. G. F. Veen, G. T. Freschet, A. Ordonez, and D. Wardle, “Litter quality and environmental controls of home-field advantage effects on litter decomposition,” Oikos 124, 187–195 (2015).

    Article  Google Scholar 

  58. S. E. Venn and H. J. D. Thomas, “Snowmelt timing affects short-term decomposition rates in an alpine snowbed,” Ecosphere 12 (3), e03393 (2021). https://doi.org/10.1002/ecs2.3393

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 19-14-00038p.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. G. Elumeeva.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

CONSENT TO PARTICIPATE

Informed consent was obtained from all individual participants included in the study.

Additional information

Translated by I. Bel’chenko

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elumeeva, T.G., Makarov, M.I., Kadulin, M.S. et al. Organic Matter Content and Standard Material Decomposition Rate in Soils of High-Mountain Plant Communities of the Teberda National Park. Eurasian Soil Sc. 56, 1940–1954 (2023). https://doi.org/10.1134/S1064229323601956

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229323601956

Keywords:

Navigation