Skip to main content
Log in

Integral Assessment of the Ecological State of Soils of the Vasileostrovskii District of Sankt-Peterburg

  • DOKUCHAEV YOUTH READINGS
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract—

The ecological state of filled urbanozems (Urbiс Technosols) of the Vasileostrovskii district of St. Petersburg belonging to three (residential, recreational, and transport) urban ecosystems was studied. The integral indicator of the ecological and biological soil state was used to assess these soils. The parameters of phytotesting (seed respiration, seed germination, root length, shoot length), actual and potential soil respiration, medium regulation activity, total organic carbon and water-soluble carbon contents, nitrate and ammonium nitrogen contents, the enrichment of organic matter with nitrogen, the composition of humus, optical density of humic acids, and the numbers of bacteria and fungi were determined. It was shown that the studied soils have virtually no features of zonal soddy-podzolic soils. They were characterized by a low degree of degradation and relatively favorable ecological condition. The least favorable ecological and biological conditions were found in the soils of the transport urban ecosystem, which was associated with high transport load.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. S. A. Aivazyan, V. S. Stepanov, and M. I. Kozlova, “Measuring synthetic categories of the quality of life of the population of the region and identifying key areas for improving socio-economic policy (on the example of Samara oblast and its municipalities),” Prikladnaya Ekonometrika, No. 2, 18–84 (2006).

    Google Scholar 

  2. B. F. Aparin and E. Yu. Sukhacheva, “Soil cover of St. Petersburg: "from the darkness of forests and swamps of blat” to a modern metropolis," Biosfera 5 (3), 327–352 (2013).

    Google Scholar 

  3. B. F. Aparin and E. Yu. Sukhacheva, “Principles of soil mapping of a megalopolis with St. Petersburg as an example,” Eurasian Soil Sci. 47 (7), 650–661 (2014). https://doi.org/10.1134/S1064229314070035

    Article  Google Scholar 

  4. B. F. Aparin, E. Yu. Sukhacheva, A. M. Bulysheva, and M. A. Lazareva, “Humus horizons of soils in urban ecosystems,” Eurasian Soil Sci. 51 (9), 1008–1020 (2018). https://doi.org/10.1134/S1064229318090016

    Article  Google Scholar 

  5. E. A. Babintseva, “Urban ecologization as the basis for the existence of a modern city,” Vestn. Ross. Univ. Druzhby Nar. Ser. Gos. Munits. Upr. 9 (3), 235–245 (2022).

    Article  Google Scholar 

  6. L. G. Bakina, A. N. Nebol’sin, and Z. P. Nebol’sina, “Changes in the content and composition of humus in the sandy loamy soddy-podzolic soil in a long-term liming experiment,” Eurasian Soil Sci. 44 (5), 525–533 (2011). https://doi.org/10.1134/S1064229311050024

    Article  Google Scholar 

  7. T. V. Bardina, “Biotesting in the system of local environmental monitoring of urban soils (using the example of St. Petersburg),” in Proceedings of Interregional Scientific and Practical Conference “Soil Resources of North-West Russia: Their Condition, Protection, and Rational Use” (Izd. Politekh. Univ., St. Petersburg, 2008), pp. 77–82.

  8. T. V. Bardina, M. V. Chugunova, L. P. Kapel’kina, and V. I. Bardina, “Biological estimation of the toxicity of urban soils in soil-ecological monitoring,” Ekol. Urban. Territ., No. 2, 87–91 (2014).

  9. T. V. Bardina, M. V. Chugunova, V. V. Kulibaba, and V. I. Bardina, “Estimation of the ecological state of soils in a reclaimed quarry using biotesting methods,” Biosfera, Nos. 1–2, 1–11 (2020).

    Google Scholar 

  10. N. P. Bel’chikova, “Determination of soil humus using the Tyurin method,” in Agrochemical Methods for Soil Research (Izd. Akad. Nauk SSSR, Moscow, 1960), pp. 44–51.

    Google Scholar 

  11. O. A. Berseneva, V. P. Salovarova, and A. A. Pristavka, “Soil micromycetes of the main natural zones,” Izv. Irkutsk. Gos. Univ. Ser. Biol. Ekol. 1 (1), 3–9 (2008).

    Google Scholar 

  12. V. F. Val’kov, K. Sh. Kazeev, and S. I. Kolesnikov, “Methodology for studying the biological activity of soils using the example of the North Caucasus,” Nauchn. Mysl’ Kavk., No. 1, 32–37 (1999).

  13. O. V. Vel’mozhina, O. I. Bakhireva, and M. M. Sokolova, “Use of phytotesting to assess the possibility of bioremediation of soil contaminated with lead and mercury ions,” Vestn. Permsk. Nats. Issled. Politekh. Univ. Khim. Tekhnol. Biotekhnol., No. 1, 9–18 (2018).https://doi.org/10.15593/2224-9400/2018.1.01

  14. Yu. N. Vodyanitskii, “Organic matter of urban soils: a review,” Eurasian Soil Sci. 48 (8), 802–811 (2015).

    Article  Google Scholar 

  15. Age and Sex Composition of the Population of St. Petersburg as of January 1, 2020. https://img-cdn.tinkoffjournal.ru/-/ozrastno-polovoi-sostav-naseleniia-sankt-peterburga-na-1-ianvaria-2020-goda.pdf.

  16. L. A. Vorob’eva, Theory and Practice of Chemical Analysis of Soils (GEOS, Moscow, 2006) [in Russian].

    Google Scholar 

  17. Yu. A. Vyal’ and A. V. Shilenkov, “Estimation of biological activity of soils in urban landscapes (using the example of Zarechny),” Est. Nauki, No. 14, 7−10 (2009).

    Google Scholar 

  18. M. I. Gerasimova, M. N. Stroganova, N. V. Mozharova, and T. V. Prokof’eva, Anthropogenic Soils: Genesis, Geography, Reclamation (Oikumena, Smolensk, 2003) [in Russian].

    Google Scholar 

  19. A. M. Glushakova, L. V. Lysak, A. B. Umarova, T. V. Prokof’eva, Yu. V. Podushin, G. S. Bykova, and L. P. Malukova, “Bacterial complexes of urbanozems in southern cities of Russia,” Eurasian Soil Sci. 54 (2), 257−263 (2021). https://doi.org/10.1134/S1064229321020058

    Article  Google Scholar 

  20. E. A. Golovko, “On methods for studying the biological activity of peat soils,” in Microbiological and Biochemical Studies of Soils (Urozhai, Kyiv, 1971), pp. 68−76.

    Google Scholar 

  21. E. V. Dadenko, K. Sh. Kazeev, S. I. Kolesnikov, and V. F. Val’kov, “Changes in the enzymatic activity of soil samples upon their storage,” Eurasian Soil Sci. 42 (12), 1380−1385 (2009). https://doi.org/10.1134/S1064229309120084

    Article  Google Scholar 

  22. T. G. Dobrovol’skaya, D. G. Zvyagintsev, I. Yu. Chernov, A. V. Golovchenko, G. M. Zenova, L. V. Lysak, N. A. Manucharova, O. E. Marfenina, L. M. Polyanskaya, A. L. Stepanov, and M. M. Umarov, “The role of microorganisms in the ecological functions of soils,” Eurasian Soil Sci. 48 (9), 959−967 (2015). https://doi.org/10.1134/S1064229315090033

    Article  Google Scholar 

  23. G. A. Zavarzin and N. N. Kolotilova, Introduction to Natural Microbiology (Kn. Dom. Univ., Moscow, 2001) [in Russian].

    Google Scholar 

  24. L. I. Zainitdinova, R. N. Zhuraeva, N. A. Lazutin, S. I. Kukanova, T. B. Khegai, and R. B. Ergashev, “The effect of urbanization on microbiocenoses of urban soils,” Khim. Biol., No. 11-1, 12−20 (2021).

  25. D. G. Zvyagintsev, T. G. Dobrovol’skaya, and I. P. Bab’eva, “The role of microorganisms in the biogeocenotic functions of soils,” Pochvovedenie, No. 6, 63−77 (1992).

    Google Scholar 

  26. K. Sh. Kazeev, Yu. S. Kozun’, and S. I. Kolesnikov, “Applying an integral index to evaluate the spatial differentiation of biological properties of soils along an aridity gradient in the south of Russia,” Contemp. Probl. Ecol. 8 (1), 91–98 (2015).

    Article  Google Scholar 

  27. K. Sh. Kazeev, S. I. Kolesnikov, and V. F. Val’kov, Biological Diagnostics and Indication of Soils: Methodology and Research Methods (Izd. Rostov. Gos. Univ., Rostov-on-Don, 2003) [in Russian].

    Google Scholar 

  28. K. Sh. Kazeev and S. I. Kolesnikov, Biodiagnostics of Soils: Methodology and Research Methods (Izd. Rostov. Gos. Univ., Rostov-on-Don, 2012) [in Russian].

    Google Scholar 

  29. N. V. Karpova, “The city as an urban ecosystem: essential content and approaches to management,” Ekon. Ekol. Territ. Obraz., No. 3, 73–78 (2018).

  30. S. I. Kolesnikov, Z. R. Tlekhas, K. Sh. Kazeev, and V. F. Val’kov, “Chemical contamination of Adygea soils and changes in their biological poperties,” Eurasian Soil Sci. 42 (12), 1397–1403 (2009). https://doi.org/10.1134/S1064229309120102

    Article  Google Scholar 

  31. V. I. Kulagina, L. M. Sungatullina, S. S. Ryazanov, A. M. Khairullina, R. R. Shagidullin, and E. Kh. Rupova, “Checking a set of parameters for an integral assessment of the ecological and biological state of soils in organic farming,” Uch. Zap. Krym. Fed. Univ. im. V. I. Vernadskogo. Biol. Khim. 7 (1), 90–102 (2021). https://doi.org/10.37279/2413-1725-2021-7-1-90-102

    Article  Google Scholar 

  32. V. I. Kulagina, L. M. Sungatullina, R. M. Tagirov, S. S. Ryazanov, and A. M. Khisamova, “Selection of microbiological indicators for performing an integral ecological-biological assessment of soils under waterlogging,” Prints. Ekol., No. 4(34), 45–56 (2019).

  33. E. K. Kudzheva, “Environmental problems of urbanization,” Agrar. Zemel’n. Pravo, No. 2, 111–114 (2019).

    Google Scholar 

  34. N. M. Labutova, Methods for Studying Soil Microorganisms (S.-Peterburg. Gos. Univ., St. Petersburg, 2009) [in Russian].

    Google Scholar 

  35. A. V. Litvinovich, “History of soil liming,” Agrofizika, No. 2, 45–51 (2014).

    Google Scholar 

  36. O. V. Lisovitskaya and V. A. Terekhova, “Phytotesting: basic approaches, problems of the laboratory method and modern solutions,” Dokl. Ekol. Pochvoved. 13 (1), 1–18 (2010).

    Google Scholar 

  37. L. V. Lysak and E. V. Lapygina, “The diversity of bacterial communities in urban soils,” Eurasian Soil Sci. 51 (9), 1050–1056 (2018).

    Article  Google Scholar 

  38. V. A. Miloserdova, E. Ya. Rizhiya, N. E. Orlova, and T. A. Bakina, “Labile carbon and nitrogen compounds extractable with hot water in soddy-podzolic soil with biochar and plant residues,” Agrofizika, No. 1, 23–30 (2020).

    Google Scholar 

  39. V. G. Mineev, Workshop on Agrochemistry (Mosk. Gos. Univ., Moscow, 2001) [in Russian].

  40. T. G. Mirchink, Soil Mycology (Mosk. Gos. Univ., Moscow, 1988) [in Russian].

    Google Scholar 

  41. B. N. Moshchenikova, Candidate’s Dissertation in Biology (St. Petersburg, 2011).

  42. A. T. Nikitina and S. A. Stepanova, Ecology, Nature Conservation, Environmental Safety (Izd. Mezhdunar. Nezavisimogo Ekol.-Politologicheskogo Univ., Moscow, 2000) [in Russian].

    Google Scholar 

  43. D. S. Orlov, Humic Acids of Soils and General Theory of Humification (Mosk. Gos. Univ., Moscow, 1990) [in Russian].

    Google Scholar 

  44. E. E. Orlova, T. A. Bankina, N. E. Orlova, N. M. Labutova, M. P. Bankin, and L. K. Yakkonen, Workshop on Agroecology (Izd. S.-Peterburg. Univ., St. Petersburg, 2011) [in Russian].

  45. E. E. Orlova, M. V. Chugunova, and A. D. Kirsanov, “Changes in the environment-regulating activity of microbiocenosis during secondary oil pollution of cultivated soddy-podzolic soil,” in Soil Resources of North-West Russia: Their State, Protection, and Rational Use: Proceedings of Interregional Scientific and Practical Conference (St. Petersburg, 2008), pp. 163–167.

  46. E. E. Orlova and D. A. Samulenkov, “Effect of benzo(a)pyrene contamination on organic matter of soddy-podzolic soil,” in Humus and Soil Formation (2007), pp. 29–36.

  47. N. E. Orlova, L. G. Bakina, and E. E. Orlova, Methods for Studying Soil Organic Matter (Izd. S.-Peterburg. Gos. Univ., St. Petersburg, 2007) [in Russian].

    Google Scholar 

  48. S. E. Petrov, Analysis of the Agricultural Efficiency of the Territory Based on a System of Indicators for Monitoring the State of Land (RGB, Astrakhan, 2007) [in Russian].

  49. G. Yu. Polousova, Statistical Analysis of the Influence of Environmental Factors on the Health of the Population of Tula Oblast (RGB, Moscow, 2003) [in Russian].

    Google Scholar 

  50. A. V. Prusachenko, E. P. Protsenko, S. Yu. Mironov, N. A. Kleeva, I. A. Grinenko, and A. V. Galyas, “Phytotesting in estimating the toxicity of urban soils,” Ekol. Urban. Territ., No. 2, 105–109 (2010).

  51. V. G. Sadkov and I. E. Grekov, “The highest values of civilization and measuring the results of social development of countries of the world community,” in Intellectual Powers of Humanity and the Harmony of World Development (2007), pp. 201–235.

  52. V. M. Semenov and B. M. Kogut, Soil Organic Matter (GEOS, Moscow, 2015) [in Russian].

    Google Scholar 

  53. A. N. Tepeeva, A. M. Glushakova, and A. V. Kachalkin, “Yeast communities of the Moscow city soils,” Microbiology (Moscow) 87 (3), 407–415 (2018).

    Article  Google Scholar 

  54. V. I. Titova, Z. S. Artem’eva, and A. M. Arkhangel’skaya, “Agrogenic transformation of organic matter of light gray forest light loamy soil (according to studies in long-term experience),” Izv. Timiryazevsk. S-kh. Akad., No. 3, 18–30 (2013).

  55. G. N. Fedotov, S. A. Shoba, M. F. Fedotova, and V. V. Demin, “On the probable nature of biological activity of humic substances,” Eurasian Soil Sci. 51 (9), 1034–1041 (2018). https://doi.org/10.1134/S1064229318090053

    Article  Google Scholar 

  56. E. V. Khaldeeva, A. A. Bayazitova, S. A. Lisovskaya, N. I. Glushko, and V. R. Parshakov, “Mycobiota of soils in urban areas with different levels of anthropogenic load,” Gig. Sanit. 96 (6), 505–508 (2017). https://doi.org/10.18821/0016-9900-2017-96-6-505-508

    Article  Google Scholar 

  57. D. M. Khomyakov, “Anti-icing reagents at Moscow road facilities. Experience of the past decade,” Dorozhn. Derzhava, No. 47, 92–96 (2013).

    Google Scholar 

  58. V. A. Chernikov, Diagnostics of the Humus State of Soils Based on Indicators of Structural Composition and Physicochemical Properties (Mosk. Gos. S.-kh. Akad., Moscow, 1984) [in Russian].

  59. M. V. Chugunova, “Estimation of the biological state of soddy-podzolic soil contaminated with various doses of oil,” in Humus and Soil Formation (St. Petersburg, 2005), pp. 191–196.

  60. S. N. Chukov, Structural and Functional Parameters of Soil Organic Matter under Anthropogenic Influence (Izd. S.-Peterburg. Univ., St. Petersburg, 2001) [in Russian].

    Google Scholar 

  61. G. A. Shamilishvili, E. V. Abakumov, D. N. Gabov, and I. I. Alekseev, “Peculiarities of the fractional composition of polycyclic aromatic hydrocarbons and polyelement contamination of soils in urban areas and their hygienic characteristics (using the example of soils in functional zones of St. Petersburg),” Gig. Sanit., No. 9, 827–837 (2016).

  62. A. I. Shcherbakov, M. G. Mdinaradze, A. D. Nazarov, and E. A. Nazarova, Demography (INFRA-M, Moscow, 2017) [in Russian].

  63. A.-C.Norrström and B. Bergstedt, “The impact of road de-icing salts (NaCl) on colloid dispersion and base cation pools in roadside soils,” Water, Air, Soil Pollut. 127, 281–299 (2001).

    Article  Google Scholar 

  64. A. Joutti, E. Schultz, P. Pessala, et al., “Ecotoxity of alternative de-icers,” J. Soils Sediments, No. 4, 269–272 (2003).

    Article  Google Scholar 

  65. A. Lehmann and K. Stahr, “Nature and significance of anthropogenic urban soils,” J. Soils Sediments, No. 4, 247–260 (2007).

    Article  Google Scholar 

  66. C. Trigo and A. S. Ball, “Is the solubilized product from the degradation of lignocellulose by actinomycetes a precursor of humic substances?,” Microbiology, No. 11, 3145–260 (20073152 (1994).

  67. D. Ramakrishna and T. Viraraghavan, “Environmental impact of chemical deicers – a review,” Water, Air, Soil Pollut. 166, 49–63 (2005).

    Article  Google Scholar 

  68. I. Brianskaia, V. Vasenev, and R. Brykova, “Soil organic carbon stability of urban soils and of floodplain soils under different hydrothermal conditions,” in EGU General Assembly Conference Abstracts (2020), p. 663.

  69. IUSS Working Group WRB, World Reference Base for Soil Resources 2014. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. World Soil Resources Reports No. 106 (FAO, Rome, 2014).

    Google Scholar 

  70. J. A. Ocampo, A. Chowdhury, and D. Alarcon, The World Economy through the Lens of the United Nations (2018).

  71. L. Beyer, P. Kahle, H. Kretschmer, and Q. Wu, “Soil organic matter composition of manimpacted urban soil in North Germany,” J. Plant Nutr. Soil Sci. 164, 359–364 (2001).

    Article  Google Scholar 

  72. Q. Wu, H. P. Blume, L. Beyer, and U. Schleub, “Method for characterization of inert organic carbon in urbic Anthrosols,” Commun. Soil Sci. Plant Anal. 30, 1497–1506 (1999).

    Article  Google Scholar 

  73. R. Pouyat, P. Groffman, I. Yesilonis, and L. Hernandez, “Soil carbon pools and fluxes in urban ecosystems,” Environ. Pollut. 116, 107–118 (2002).

    Article  Google Scholar 

  74. Soils within Cities. Global Approaches to Their Sustainable Management – Composition, Properties, and Functions of Soils of the Urban Environment (Schweizerbart Science Publishers, Germany, Stuttgart, 2017).

  75. S.-Y. Kim and C. Koretsky, “Effects of road salt deicers on sediment biogeochemistry,” Biogeochemistry, Nos. 1–3, 343–358 (2013). .https://doi.org/10.1007/s10533-012-9728-x

    Article  Google Scholar 

  76. W. Piepersberg, “Pathway engineering in secondary metabolite-producing actinomycetes,” Crit. Rev. Biotechnol., No. 3, 251–285 (1994).

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaohui Xu.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by V. Klyueva

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, S., Orlova, E.E., Shakhnazarova, V.Y. et al. Integral Assessment of the Ecological State of Soils of the Vasileostrovskii District of Sankt-Peterburg. Eurasian Soil Sc. 56 (Suppl 2), S250–S259 (2023). https://doi.org/10.1134/S1064229323601944

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229323601944

Keywords:

Navigation