Skip to main content
Log in

Changes in the Microbiological and Physicochemical Properties of Soils after Fires in Pine and Birch Forests in the Central Part of the Zabaikalsky Krai

  • SOIL BIOLOGY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The microbiological and some physicochemical properties of iron-illuvial soddy podburs (Entic Rustic Podzols) under Scots pine forests and gray-humus typical light loamy soils (Umbrisols) under secondary birch forests in central areas of the Zabaikalsky krai were studied. Fires result in a decrease in the sum of exchangeable bases, total nitrogen, and available potassium and phosphorus along with an increase in the C : N ratio in soddy podburs of pine forests; the opposite tendencies are observed after fires in gray-humus soils of birch forests. The humus content in the upper soil horizon decreases only after high-severity fire in the recently burned Scots pine forest and increases in all other sites. A decrease in soil acidity is observed at all burned sites. High-severity fires lead to a significant decrease in the content of microbial biomass and the intensity of basal respiration, as well as to changes in the structure of ecotrophic groups of microorganisms in the upper mineral part of soils to a depth of 10 cm, while low-severity fires mainly affect the duff. The qCO2 coefficient increases 2–5 times in the duff and 1.5–2 times in the humus horizon only after high-severity fires. In the recently burned Scots pine forest, the storage of microbial biomass and microbial production of carbon dioxide significantly decrease to a depth of 10 cm of the mineral soil layer. At the steppe site formed after repeated burning in the Scots pine forest and at the birch forest after high-severity fire, the microbial biomass carbon decreases by 15–20%, and the microbial production of CO2 increases by 10–20%. The considered post-fire transformation of the structural and functional parameters of soil microbial cenosis, as well as a 20–40% decrease in the pool of microbial biomass carbon in all the soils after fires predetermine a long period of soil recovery after fires in the light coniferous and deciduous forests in the central part of the Zabaikalsky krai.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. N. D. Ananyeva, E. A. Susyan, and E. G. Gavrilenko, “Determination of the soil microbial biomass carbon using the method of substrate-induced respiration,” Eurasian Soil Sci. 44 (11), 1215–1221 (2011).

    Article  Google Scholar 

  2. N. D. Ananyeva, E. A. Susyan, I. M. Ryzhova, E. O. Bocharnikova, and E. V. Stolnikova, “Microbial biomass carbon and the microbial carbon dioxide production by soddy-podzolic soils in postagrogenic biogeocenoses and in native spruce forests of the southern taiga (Kostroma oblast),” Eurasian Soil Sci. 42 (9), 1029–1037 (2009).

    Article  Google Scholar 

  3. N. P. Anuchin, Forest Taxation (Lesnaya Promyshlennost’, Moscow, 1982) [in Russian].

    Google Scholar 

  4. E. V. Arinushkina, Handbook on Soil Chemical Analysis (Mosk. Gos. Univ., Moscow, 1970) [in Russian].

    Google Scholar 

  5. I. N. Bezkorovainaya, G. A. Ivanova, P. A. Tarasov, N. D. Sorokin, A. V. Bogorodskaya, V. A. Ivanov, S. G. Konard, and D. Dzh. Makrae, “Pyrogenic transformation of soils in pine forests of the middle taiga of the Krasnoyarsk krai,” Sib. Ekol. Zh., No. 1, 143–152 (2005).

  6. A. V. Bogorodskaya and E. A. Kukavskaya, “State of microbial communities in soils of deciduous and light coniferous forests of Central Siberia after logging and fires,” Lesovedenie, No. 5, 383–396 (2016).

    Google Scholar 

  7. A. V. Bogorodskaya, T. V. Ponomareva, D. Yu. Efimov, and A. S. Shishikin, “Transformation of ecofunctional parameters of soil microbial cenoses in clearings for power transmission lines in Central Siberia,” Eurasian Soil Sci. 50 (6), 720–731 (2017).

    Article  Google Scholar 

  8. A. V. Bogorodskaya, “Structural and functional parameters of soil microbiocenoses after fires in light coniferous plantations,” in Impact of Fires on Light Coniferous Forests of the Lower Angara Region (Nauka, Novosibirsk, 2022), pp. 147–167 [in Russian].

    Google Scholar 

  9. L. V. Buryak, E. A. Kukavskaya, O. P. Kalenskaya, O. F. Malykh, and E. O. Baksheeva, “Consequences of forest fires in the southern and central regions of the Trans-Baikal krai,” Sib. Lesn. Zh., No. 6, 94–102 (2016). https://doi.org/10.15372/SJFS20160609

  10. L. B. Buyantueva and E. P. Nikitina, “Microbiological studies of chestnut soils in southwestern Transbaikalia,” Samar. Nauchn. Vestn., No. 2, 38–40 (2015).

  11. L. A. Vorob’eva, Chemical Analysis of Soils (Mosk. Univ., Moscow, 1998) [in Russian].

    Google Scholar 

  12. I. M. Gabbasova, T. T. Garipov, R. R. Suleimanov, M. A. Komissarov, I. K. Khabirov, L. V. Sidorova, F. I. Nazyrova, Z. G. Prostyakova, and E. Yu. Kotlugalyamova, “The influence of ground fires on the properties and erosion of forest soils in the Southern Urals (Bashkir State Nature Reserve),” Eurasian Soil Sci. 52 (4), 370–379 (2019).

    Article  Google Scholar 

  13. R. F. Geniatulin, Encyclopedia of Transbaikalia, Vol. 1: Chita Oblast (Nauka, Novosibirsk, 2000) [in Russian].

  14. I. P. Gerasimov, Cisbaikalia and Transbaikalia (Nauka, Moscow, 1965) [in Russian].

    Google Scholar 

  15. Yu. S. Gorbunova, T. A. Devyatova, and A. Ya. Grigor’evskaya, “Influence of fires on the soil and vegetation cover of forests in the center of the Russian plain,” Vestn. Voronezh. Gos. Univ. Ser. Khim. Biol. Farm., No. 4, 52–56 (2014).

  16. I. D. Grodnitskaya, L. V. Karpenko, O. E. Pashkeeva, N. N. Goncharova, V. V. Startsev, O. A. Baturina, and A. A. Dymov, “Impact of forest fires on the microbiological properties of oligotrophic peat soils and gleyed peat podzols of bogs in the northern part of the Sym-Dubches Interfluve, Krasnoyarsk krai,” Eurasian Soil Sci. 55 (4), 460–473 (2022).

    Article  Google Scholar 

  17. A. B. Gyninova, Zh. D. Dyrzhinov, and B.-M. N. Gonchikov, “Peculiarities of soil transformation under the influence of fires in pine forests of the Cis-Baikal area,” Vestn. Buryat. Gos. Univ., No. 1, 44–53 (2018). https://doi.org/10.18101/2587-7143-2018-1-44-53

  18. A. A. Dymov, Yu. A. Dubrovsky, and D. N. Gabov, “Pyrogenic changes in iron-illuvial podzols in the middle taiga of the Komi Republic,” Eurasian Soil Sci. 47 (2), 47–56 (2014).

    Article  Google Scholar 

  19. M. D. Evdokimenko, “Pyrogenic disturbances of the forest environment in the pine forests of Transbaikalia and their silvicultural consequences,” Lesovedenie, No. 1, 3–12 (2014).

    Google Scholar 

  20. K. Sh. Kazeev, M. Yu. Odabashian, A. V. Trushkov, and S. I. Kolesnikov, “Assessment of the influence of pyrogenic factors on the biological properties of chernozems,” Eurasian Soil Sci. 53 (11), 1610–1619 (2020).

    Article  Google Scholar 

  21. Classification and Diagnostics of Russian Soils (Oikumena, Smolensk, 2004) [in Russian].

  22. Yu. N. Krasnoshchekov and Yu. S. Cherednikova, Post-Pyrogenic Variability of Forest Soils in the Mountain Pribaikalye (Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 2022) [in Russian].

    Book  Google Scholar 

  23. N. P. Kurbatskii, Study of the Quantity and Properties of Forest Combustible Materials. Issues of Forest Pyrology (Krasnoyarsk, 1970), pp. 5–58.

  24. A. P. Makarova and E. V. Naprasnikova, “Microbiological and biochemical characteristics of permafrost gley soils in Northern Transbaikalia,” Izv. Irkutsk. Gos. Univ. Ser. Biol. Ekol., No. 1, 25–32 (2011).

  25. E. Yu. Maksimova, A. G. Kudinova, and E. V. Abakumov, “Functional activity of soil microbial communities in post-fire pine stands of Tolyatti, Samara oblast,” Eurasian Soil Sci. 50 (2), 239–245 (2017).

    Article  Google Scholar 

  26. M. N. Maslov, O. A. Maslova, L. A. Pozdnyakov, and E. I. Kopeina, “Biological activity of soils in mountain tundra ecosystems under postpyrogenic restoration,” Eurasian Soil Sci. 51 (6), 692–700 (2018).

    Article  Google Scholar 

  27. O. V. Masyagina, S. Yu. Evgrafova, S. V. Titov, and A. S. Prokushkin, “Dynamics of soil respiration at different stages of pyrogenic restoration succession with different-aged burns in Evenkia as an example,” Russ. J. Ecol. 46 (1), 27–35 (2015).

    Article  Google Scholar 

  28. E. N. Mishustin and V. T. Emtsev, Microbiology (Agropromizdat, Moscow, 1987) [in Russian].

    Google Scholar 

  29. Workshop on Microbiology, Ed. by A. I. Netrusov (Academia, Moscow, 2005) [in Russian].

    Google Scholar 

  30. N. I. Stavrova, I. B. Kalimova, V. V. Gorshkov, I. V. Drozdova, N. V. Alekseeva-Popova, and I. Yu. Bakkal, “Long-term postfire changes of soil characteristics in dark coniferous forests of the European North,” Eurasian Soil Sci. 52 (2), 218–227 (2019).

    Article  Google Scholar 

  31. V. V. Startsev, A. A. Dymov, and A. S. Prokushkin, “Soils of postpyrogenic larch stands in Central Siberia: morphology, physicochemical properties, and specificity of soil organic matter,” Eurasian Soil Sci. 50 (8), 885–897 (2017).

    Article  Google Scholar 

  32. E. V. Stolnikova, N. D. Ananyeva, and O. V. Chernova, “The microbial biomass and its activity and structure in the soils of old forests in the European Russia,” Eurasian Soil Sci. 44 (4), 437–452 (2011).

    Article  Google Scholar 

  33. V. N. Sukachev and S. V. Zonn, Methodological Guidelines for the Study of Forest Types (Izd. Akad. Nauk SSSR, Moscow, 1961) [in Russian].

    Google Scholar 

  34. E. A. Susyan, N. D. Ananyeva, E. G. Gavrilenko, O. V. Chernova, and M. V. Bobrovskii, “Microbial biomass carbon in the profiles of forest soils of the southern taiga zone,” Eurasian Soil Sci. 42 (10), 1148–1155 (2009).

    Article  Google Scholar 

  35. A. S. Tsibart and A. N. Gennadiev, “The influence of fires on the properties of forest soils in the Amur River basin (the Norskii Reserve),” Eurasian Soil Sci. 41 (7), 686–693 (2008).

    Article  Google Scholar 

  36. T. I. Chernov and M. V. Semenov, “Management of soil microbial communities: opportunities and prospects (a review),” Eurasian Soil Sci. 54 (12), 1888–1902 (2021).

    Article  Google Scholar 

  37. E. Yu. Shakhmatova, “Changes in the properties of litter and soils in burnt areas in pine forests of Western Transbaikalia,” Nauka Obraz., No. 3, 101–106 (2017).

  38. J. P. E. Anderson and K. H. Domsch, “A physiological method for the quantitative measurement of microbial biomass in soils,” Soil Biol. Biochem. 10, 314–322 (1978). https://doi.org/10.1016/0038-0717(78)90099-8

    Article  Google Scholar 

  39. T.-H. Anderson and K. H. Domsch, “Application of eco-physiological quotients (qCO2 and qD) on microbial biomasses from soils of different cropping histories,” Soil Biol. Biochem. 22, 251–255 (1990). https://doi.org/10.1016/0038-0717(90)90094-G

  40. K. Barrett, R. Baxter, E. Kukavskaya, H. Balzter, E. Shvetsov, and L. Buryak, “Postfire recruitment failure in Scots pine forests of southern Siberia,” Remote Sens. Environ. 237, (2020). https://doi.org/10.1016/j.rse.2019.111539

  41. G. Certini, “Fire as a soil-forming factor,” Ambio 43, 191–195 (2014).https://doi.org/10.1007/s13280-013-0418-2

    Article  Google Scholar 

  42. G. Certini, D. Moya, M. E. Lucas-Borja, and G. Mastrolonardo, “The impact of fire on soil-dwelling biota: a review,” For. Ecol. Manage. 488, 118989 (2021). https://doi.org/10.1016/j.foreco.2021.118989

    Article  Google Scholar 

  43. N. A. Cutler, M. Arróniz-Crespo, L. E. Street, D. L. Jones, D. L. Chaput, and T. H. DeLuca, “Long-term recovery of microbial communities in the boreal bryosphere following fire disturbance” Microb. Ecol. 73, 75–90 (2017). https://doi.org/10.1007/s00248-016-0832-7

    Article  Google Scholar 

  44. G. P. Dicen, R. V. Rallos, J. L. R. Labides, and I. A. Navarrete, “Vulnerability of soil organic matter to microbial decomposition as a consequence of burning,” Biogeochemistry 150, 123–137 (2020). https://doi.org/10.1007/s10533-020-00688-1

    Article  Google Scholar 

  45. S. R. Dooley and K. K. Treseder, “The effect of fire on microbial biomass: a meta-analysis of field studies,” Biogeochemistry 109, 49–61 (2012). https://doi.org/10.1007/s10533-011-9633-8

    Article  Google Scholar 

  46. H. Fritze, T. Pennanen, and J. Pietikainen, “Recovery of soil microbial biomass and activity from prescribed burning,” Can. J. For. Res. 23, 1286–1290 (1993). https://doi.org/10.1139/x93-164

    Article  Google Scholar 

  47. H. Insam and K. Haselwandter, “Metabolic quotient of the soil microflora in relation to plant succession,” Oecologia 79, 174–178 (1989). https://doi.org/10.1007/bf00388474

    Article  Google Scholar 

  48. IUSS Working Group WRB, World Reference Base for Soil Resources 2014, Update 2015. Int. Soil Classif. Syst. Naming Soils Creating Legends Soil Maps (2015).

    Google Scholar 

  49. E. A. Kukavskaya, L. V. Buryak, E. G. Shvetsov, S. G. Conard, and O. P. Kalenskaya, “The impact of increasing fire frequency on forest transformations in southern Siberia,” For. Ecol. Manage. 382, 225–235 (2016). https://doi.org/10.1016/j.foreco.2016.10.015

    Article  Google Scholar 

  50. S. M. Ludwig, H. D. Alexander, K. Kielland, P. J. Mann, S. M. Natali, and R. W. Ruess, “Fire severity effects on soil carbon and nutrients and microbial processes in a Siberian larch forest,” Global Change Biol. 24, 5841–5852 (2018). https://doi.org/10.1111/gcb.14455

    Article  Google Scholar 

  51. J. Mataix-Solera, C. Guerrero, F. García-Orenes, G. M. Bárcenas, and M. P. Torres, “Forest fire effects on soil microbiology,” in Fire Effects on Soils and Restoration Strategies (Cerdà Science Publishers, Enfield, 2009), pp. 133–175. https://doi.org/10.1201/9781439843338n

  52. M. R. A. Pingree and L. N. Kobziar, “The myth of the biological threshold: a review of biological responses to soil heating associated with wildland fire,” For. Ecol. Manage. 432, 1022–1029 (2019). https://doi.org/10.1016/j.foreco.2018.10.032

    Article  Google Scholar 

  53. M. T. Prendergast-Miller, A. B. DeMenezes, L. M. Macdonald, P. Toscas, A. Bissett, G. Baker, M. Farrell, A. E. Richardson, T. Wark, and P. H. Thrall, “Wildfire impact: natural experiment reveals differential short-term changes in soil microbial communities,” Soil Biol. Biochem. 109, 1–13 (2017). https://doi.org/10.1016/j.soilbio.2017.01.027

    Article  Google Scholar 

  54. Y. Pressler, J. C. Moore, and M. F. Cotrufo, “Belowground community responses to fire: meta-analysis reveals contrasting responses of soil microorganisms and mesofauna,” Oikos 128, 309–327 (2019). https://doi.org/10.1111/oik.05738

    Article  Google Scholar 

  55. U. Sharma, SharmaJ. C. Garima, and M. Devi, “Effect of forest fire on soil nitrogen mineralization and microbial biomass: a review,” J. Pharmacogn. Phytochem. 6, 682–685 (2017).

    Google Scholar 

  56. C. M. Yeager, D. E. Northup, C. C. Grow, S. M. Barns, and C. R. Kuske, “Changes in nitrogen-fixing and ammonia-oxidizing bacterial communities in soil of a mixed conifer forest after wildfire,” Appl. Environ. Microbiol. 71, 2713–2722 (2005). https://doi.org/10.1128/AEM.71.5.2713-2722.2005

    Article  Google Scholar 

Download references

Funding

This study was carried out within the framework of state assignment of the Sukachev Institute of Forest, Krasnoyarsk Research Center, Siberian Branch of the Russian Academy of Sciences, registration nos. 0287–2021–0008 and 0287–2021–0041.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Bogorodskaya.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by T. Chicheva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogorodskaya, A.V., Kukavskaya, E.A., Kalenskaya, O.P. et al. Changes in the Microbiological and Physicochemical Properties of Soils after Fires in Pine and Birch Forests in the Central Part of the Zabaikalsky Krai. Eurasian Soil Sc. 56, 1707–1723 (2023). https://doi.org/10.1134/S1064229323601853

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229323601853

Keywords:

Navigation