Skip to main content
Log in

Resolution Effect of Soil Organic Carbon Prediction in a Large-Scale and Morphologically Complex Area

  • GENESIS AND GEOGRAPHY OF SOILS
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Topographic variables derived from digital elevation models (DEM) are the most commonly used predictor in soil organic carbon (SOC) prediction. The predictability of these variates for the spatial heterogenity of SOC is influenced by the size of DEM resolution. This paper aimed to investigate the resolution effect of the topography at multiple DEM resolutions and select the most important predictors and the optimal resolution for SOC prediction in a large-scale and morphologically complex area. The study area, covering 15 600 km2, was located in a mountainous province in China. A total of 3901 soil samples and three machine learning algorithms including random forest, gradient boosted regression tree, and artificial neural network were used to construct the SOC predictive models at resolutions of 30, 90, 150, 210, 270, 330, and 390 m. Topographic factors were derived from the DEM with an original resolution of 30 m and were subsequently resampled to varying resolutions by using the bilinear interpolation algorithm. The importance of each variate in each predictive model was computed for the most important predictor selection, and the determination coefficient (R2) and Root Mean Square Error (RMSE) of each predictive model were computed for the accuracy evaluation. Comparative analysis on point-based topographic representation, the accuracy of predictive models, and the variable importance was conducted among different resolutions to investigate the resolution effect on the SOC prediction and to select the optimal resolution for this study area. The results showed that topography was the key factor influencing the SOC distribution in this large-scale area due to the region’s mountainous nature, and the relative contribution of the topography to predict SOC distribution varied with DEM resolutions. Elevation was the most important topographic factor at all DEM resolutions. Accuracies of predictive models built on the three machine learning algorithms were all dependent on DEM resolution, indicating that DEM resolution had an important effect on SOC prediction. Overall, the random forest predictive models outperformed the other two algorithms, and its most accurate result was obtained at the 210-m resolution with an R2 of 0.25 and an RMSE of 4.77 g kg–1. In conclusion, we found that finer resolutions did not necessarily produce more accurate SOC predictions even in a large-scale and morphologically complex area. Therefore, investigating the resolution effect is suggested to select an optimal resolution for the SOC prediction in other regions characterized by similar geomorphological conditions as this study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. S. I. C. Akpa, I. O. A. Odeh, T. F. A. Bishop, A. E. Hartemink, and I. Y. Amapu, “Total soil organic carbon and carbon sequestration potential in Nigeria,” Geoderma 271, 202–215 (2016). https://doi.org/10.1016/j.geoderma.2016.02.021

    Article  Google Scholar 

  2. Arabameri, K. Rezaei, H. R. Pourghasemi, S. Lee, and M. Yamani, “GIS-based gully erosion susceptibility mapping: a comparison among three data-driven models and AHP knowledge-based technique,” Environ. Earth Sci. 77 (17), 628 (2018). https://doi.org/10.1007/s12665-018-7808-5

    Article  Google Scholar 

  3. M. Bagheri Bodaghabadi, J. MartÍNez-Casasnovas, M. H. Salehi, J. Mohammadi, I. Esfandiarpoor Borujeni, N. Toomanian, and A. Gandomkar, “Digital soil mapping using artificial neural networks and terrain-related attributes,” Pedosphere 25 (4), 580–591 (2015). https://doi.org/10.1016/S1002-0160(15)30038-2

    Article  Google Scholar 

  4. D. Beaudette and A. O’Geen, “Quantifying the aspect effect: an application of solar radiation modeling for soil survey,” Soil Sci. Soc. Am. J. 73 (4), 1345–1352 (2009). https://doi.org/10.2136/sssaj2008.0229

    Article  Google Scholar 

  5. L. T. Bennett, N. Hinko-Najera, C. Aponte, C. R. Nitschke, T. A. Fairman, M. Fedrigo, and S. Kasel, “Refining benchmarks for soil organic carbon in Australia’s temperate forests,” Geoderma 368, 114246 (2020). https://doi.org/10.1016/j.geoderma.2020.114246

    Article  Google Scholar 

  6. G. Blasch, D. Spengler, S. Itzerott, and G. Wessolek, “Organic matter modeling at the landscape scale based on multitemporal soil pattern analysis using RapidEye data,” Remote Sens. 7 (9), 11125–11150 (2015). https://doi.org/10.3390/rs70911125

    Article  Google Scholar 

  7. L. Breiman, “Random forests,” Mach. Learn. 45 (1), 5–32 (2001). https://doi.org/10.1023/A:1010933404324

    Article  Google Scholar 

  8. C. W. Brungard, J. L. Boettinger, M. C. Duniway, S. A. Wills, and T. C. Edwards, “Machine learning for predicting soil classes in three semi-arid landscapes,” Geoderma 239–240, 68–83 (2015). https://doi.org/10.1016/j.geoderma.2014.09.019

    Article  Google Scholar 

  9. S. Cavazzi, R. Corstanje, T. Mayr, J. Hannam, and R. Fealy, “Are fine resolution digital elevation models always the best choice in digital soil mapping?” Geoderma 195–196, 111–121 (2013). https://doi.org/10.1016/j.geoderma.2012.11.020

    Article  Google Scholar 

  10. P. Cui, C. Y. Dai, J. Zhang, and T. T. Li, “Assessing the effects of urban morphology parameters on PM2.5 distribution in Northeast China based on gradient boosted regression trees method,” Sustainability 14 (5), 2618 (2022). https://doi.org/10.3390/su14052618

    Article  Google Scholar 

  11. W. I. J. Dieleman, M. Venter, A. Ramachandra, A. K. Krockenberger, and M. I. Bird, “Soil carbon stocks vary predictably with altitude in tropical forests: Implications for soil carbon storage,” Geoderma 204–205, 59–67 (2013). https://doi.org/10.1016/j.geoderma.2013.04.005

    Article  Google Scholar 

  12. M. Emadi, R. Taghizadeh-Mehrjardi, A. Cherati, M. Danesh, A. Mosavi, and T. Scholten, “Predicting and mapping of soil organic carbon using machine learning algorithms in Northern Iran,” Remote Sens. 12 (14), 2234 (2020). https://doi.org/10.3390/rs12142234

    Article  Google Scholar 

  13. F. E. Fassnacht, F. Hartig, H. Latifi, C. Berger, J. Hernández, P. Corvalán, and B. Koch, “Importance of sample size, data type and prediction method for remote sensing-based estimations of aboveground forest biomass,” Remote Sens. Environ. 154, 102–114 (2014). https://doi.org/10.1016/j.rse.2014.07.028

    Article  Google Scholar 

  14. G. Forkuor, O. K. Hounkpatin, G. Welp, and M. Thiel, “High resolution mapping of soil properties using remote sensing variables in south-western Burkina Faso: a comparison of machine learning and multiple linear regression models,” PLoS One 12 (1), e0170478 (2017). https://doi.org/10.1371/journal.pone.0170478

    Article  Google Scholar 

  15. J. H. Friedman, “Stochastic gradient boosting,” Comput. Stat. Data Anal. 38 (4), 367–378 (2002). https://doi.org/10.1016/S0167-9473(01)00065-2

    Article  Google Scholar 

  16. Y. Garosi, S. Ayoubi, M. Nussbaum, and M. Sheklabadi, “Effects of different sources and spatial resolutions of environmental covariates on predicting soil organic carbon using machine learning in a semi-arid region of Iran,” Geoderma Reg. 29, e00513 (2022). https://doi.org/10.1016/j.geodrs.2022.e00513

    Article  Google Scholar 

  17. Y. Garosi, M. Sheklabadi, H. R. Pourghasemi, A. A. Besalatpour, C. Conoscenti, and K. Van Oost, “Comparison of differences in resolution and sources of controlling factors for gully erosion susceptibility mapping,” Geoderma 330, 65–78 (2018). https://doi.org/10.1016/j.geoderma.2018.05.027

    Article  Google Scholar 

  18. J. Gibson, G. R. Hancock, D. Bretreger, T. Cox, J. Hughes, and V. Kunkel, “Assessing digital elevation model resolution for soil organic carbon prediction,” Geoderma 398, 115106 (2021). https://doi.org/10.1016/j.geoderma.2021.115106

    Article  Google Scholar 

  19. J. Girardin, Y. Malhi, L. E. O. C. Aragão, M. Mamani, W. Huaraca Huasco, L. Durand, K. J. Feeley, J. Rapp, J. E. Silva-espejo, M. Silman, N. Salinas, and R. J. Whittaker, “Net primary productivity allocation and cycling of carbon along a tropical forest elevational transect in the Peruvian Andes,” Global Change Biol. 16 (12), 3176–3192 (2010). https://doi.org/10.1111/j.1365-2486.2010.02235.x

    Article  Google Scholar 

  20. M. H. Greve, M. B. Greve, P. K. Bøcher, T. Balstrøm, H. Breuning-Madsen, and L. Krogh, “Generating a Danish raster-based topsoil property map combining choropleth maps and point information,” Geografisk Tidsskrift-Danish Journal of Geography 107 (2), 1–12 (2007). https://doi.org/10.1080/00167223.2007.10649565

    Article  Google Scholar 

  21. R. Grimm, T. Behrens, M. Märker, and H. Elsenbeer, “Soil organic carbon concentrations and stocks on Barro Colorado Island — digital soil mapping using Random Forests analysis,” Geoderma 146 (1), 102–113 (2008). https://doi.org/10.1016/j.geoderma.2008.05.008

    Article  Google Scholar 

  22. S. Grunwald, J. A. Thompson, and J. L. Boettinger, “Digital soil mapping and modeling at continental scales: finding solutions for global issues,” Soil Sci. Soc. Am. J. 75 (4), 1201–1213 (2011). https://doi.org/10.2136/sssaj2011.0025

    Article  Google Scholar 

  23. B. Guo, J. Zhang, X. Meng, T. Xu, and Y. Song, “Long-term spatio-temporal precipitation variations in China with precipitation surface interpolated by ANUSPLIN,” Sci. Rep. 10 (1), 81 (2020). https://doi.org/10.1038/s41598-019-57078-3

    Article  Google Scholar 

  24. Z. Guo, K. Adhikari, M. Chellasamy, M. B. Greve, P. R. Owens, and M. H. Greve, “Selection of terrain attributes and its scale dependency on soil organic carbon prediction,” Geoderma 340, 303–312 (2019). https://doi.org/10.1016/j.geoderma.2019.01.023

    Article  Google Scholar 

  25. G. R. Hancock, C. Martinez, K. G. Evans, and D. R. Moliere, “A comparison of SRTM and high-resolution digital elevation models and their use in catchment geomorphology and hydrology: Australian examples,” Earth Surf. Processes Landforms 31 (11), 1394–1412 (2006). https://doi.org/10.1002/esp.1335

    Article  Google Scholar 

  26. X. L. He, L.Yang, A. Q. Li, L. Zhang, F. X. Shen, Y. Y. Cai, and C. H. Zhou, “Soil organic carbon prediction using phenological parameters and remote sensing variables generated from Sentinel-2 images,” Catena 205, (2021). https://doi.org/10.1016/j.catena.2021.105442

  27. T. Hengl, G. B. M. Heuvelink, B. Kempen, J. G. B. Leenaars, M. G. Walsh, K. D. Shepherd, A. Sila, R. A. MacMillan, J. de Mendes, T. Jorge, T. Lulseged, and E. Jérôme, “Mapping soil properties of Africa at 250 m resolution: random forests significantly improve current predictions,” PloS One 10 (6), e0125814 (2015). https://doi.org/10.1371/journal.pone.0125814

    Article  Google Scholar 

  28. B. Heung, H. C. Ho, J. Zhang, A. Knudby, C E. Bulmer, and M. G. Schmidt, “An overview and comparison of machine-learning techniques for classification purposes in digital soil mapping,” Geoderma 265, 62–77 (2016). https://doi.org/10.1016/j.geoderma.2015.11.014

    Article  Google Scholar 

  29. M. Hitziger and M. Ließ, “Comparison of three supervised learning methods for digital soil mapping: application to a complex terrain in the Ecuadorian Andes,” Appl. Environ. Soil Sci. 2014, 181–192 (2014). https://doi.org/10.1155/2014/809495

    Article  Google Scholar 

  30. J. Y. Huang, C. F. Wu, B. Minasny, P. Roudier, and A. B. McBratney, “Unravelling scale- and location-specific variations in soil properties using the 2-dimensional empirical mode decomposition,” Geoderma 307, 139–149 (2017). https://doi.org/10.1016/j.geoderma.2017.07.024

    Article  Google Scholar 

  31. R. Huete, H. Q. Liu, K. Batchily, and W. van Leeuwen, “A comparison of vegetation indices over a global set of TM images for EOS-MODIS,” Remote Sens. Environ. 59 (3), 440–451 (1997). https://doi.org/10.1016/S0034-4257(96)00112-5

    Article  Google Scholar 

  32. D. Kim and Y. Zheng, “Scale-dependent predictability of DEM-based landform attributes for soil spatial variability in a coastal dune system,” Geoderma 164 (3), 181–194 (2011). https://doi.org/10.1016/j.geoderma.2011.06.002

    Article  Google Scholar 

  33. J. S. Kim and S. Grunwald, “Assessment of carbon stocks in the topsoil using random forest and remote sensing images,” J. Environ. Qual. 45 (6), 1910–1918 (2016). https://doi.org/10.2134/jeq2016.03.0076

    Article  Google Scholar 

  34. V. Kunkel, G. R. Hancock, and T. Wells, “Large catchment-scale spatiotemporal distribution of soil organic carbon,” Geoderma 334, 175–185 (2019). https://doi.org/10.1016/j.geoderma.2018.07.046

    Article  Google Scholar 

  35. Q. Q. Li, T. X. Yue, C. Q. Wang, W. J. Zhang, Y.Yu, B. Li, J. Yang, and G. C. Bai, “Spatially distributed modeling of soil organic matter across China: an application of artificial neural network approach,” Catena 104, 210–218 (2013). https://doi.org/10.1016/j.catena.2012.11.012

    Article  Google Scholar 

  36. Z. Z. Liang, S. C. Chen, Y. Y. Yang, Y. Zhou, and Z. Shi, “High-resolution three-dimensional mapping of soil organic carbon in China: effects of SoilGrids products on national modeling,” Sci. Total Environ. 685, 480–489 (2019). https://doi.org/10.1016/j.scitotenv.2019.05.332

    Article  Google Scholar 

  37. W. Luo, Z. Y. Yu, S. J. Xiao, A. X. Zhu, and L. W. Yuan, “Exploratory method for spatio-temporal feature extraction and clustering: an integrated multi-scale framework,” ISPRS Int. J. Geo-Inf. 4 (4), 1870–1893 (2015). https://doi.org/10.3390/ijgi4041870

    Article  Google Scholar 

  38. Z. K. Luo, W. T. Feng, Y. Q. Luo, J. Baldock, and E. L. Wang, “Soil organic carbon dynamics jointly controlled by climate, carbon inputs, soil properties and soil carbon fractions,” Global Change Biol. 23(10), 4430–4439 (2017). https://doi.org/10.1111/gcb.13767

    Article  Google Scholar 

  39. H. Mahmoudzadeh, H. R. Matinfar, R. Taghizadeh-Mehrjardi, and R. Kerry, “Spatial prediction of soil organic carbon using machine learning techniques in western Iran,” Geoderma Reg. 21, e00260 (2020). https://doi.org/10.1016/j.geodrs.2020.e00260

    Article  Google Scholar 

  40. B. P. Malone, A. McBratney, B. Minasny, and G. Laslett, “Mapping continuous depth functions of soil carbon storage and available water capacity,” Geoderma 154 (1–2), 138–152 (2009). https://doi.org/10.1016/j.geoderma.2009.10.007

    Article  Google Scholar 

  41. C. Martinez, G. R. Hancock, J. D. Kalma, T. Wells, and L. Boland, “An assessment of digital elevation models and their ability to capture geomorphic and hydrologic properties at the catchment scale*,” Int. J. Remote Sens. 31 (23), 6239–6257 (2010). https://doi.org/10.1080/01431160903403060

    Article  Google Scholar 

  42. J. J. Maynard and M. G. Johnson, “Scale-dependency of LiDAR derived terrain attributes in quantitative soil-landscape modeling: effects of grid resolution vs. neighborhood extent,” Geoderma 230–231, 29–40 (2014). https://doi.org/10.1016/j.geoderma.2014.03.021

    Article  Google Scholar 

  43. B. McBratney, M. L. Mendonça Santos, and B. Minasny, “On digital soil mapping,” Geoderma 117 (1), 3–52 (2003). https://doi.org/10.1016/S0016-7061(03)00223-4

    Article  Google Scholar 

  44. B. McBratney, I. O. A. Odeh, T. F. A. Bishop, M. S. Dunbar, and T. M. Shatar, “An overview of pedometric techniques for use in soil survey,” Geoderma 97 (3), 293–327 (2000). https://doi.org/10.1016/S0016-7061(00)00043-4

    Article  Google Scholar 

  45. Minasny, A. B. McBratney, M. D. L. Mendonça-Santos, I. Odeh, and B. Guyon, “Prediction and digital mapping of soil carbon storage in the Lower Namoi Valley,” Soil Res. 44 (3), 233–244 (2006). https://doi.org/10.1071/SR05136

    Article  Google Scholar 

  46. P. Quinn, K. Beven, P. Chevallier, and O. Planchon, “The prediction of hillslope flow paths for distributed hydrological modeling using digital terrain models,” Hydrol. Processes 5 (1), 59–79 (1991). https://doi.org/10.1002/hyp.3360050106

    Article  Google Scholar 

  47. R. A. V. Rossel and T. Behrens, “Using data mining to model and interpret soil diffuse reflectance spectra,” Geoderma 158 (1), 46–54 (2010). https://doi.org/10.1016/j.geoderma.2009.12.025

    Article  Google Scholar 

  48. Siegmann and T. Jarmer, “Comparison of different regression models and validation techniques for the assessment of wheat leaf area index from hyperspectral data,” Int. J. Remote Sens. 36 (18), 4519–4534 (2015). https://doi.org/10.1080/01431161.2015.1084438

    Article  Google Scholar 

  49. G. C. Simbahan, A. Dobermann, P. Goovaerts, J. L. Ping, and M. L. Haddix, “Fine-resolution mapping of soil organic carbon based on multivariate secondary data,” Geoderma 132 (3), 471–489 (2006). https://doi.org/10.1016/j.geoderma.2005.07.001

    Article  Google Scholar 

  50. M. P. Smith, A. X. Zhu, J. E. Burt, and C. Stiles, “The effects of DEM resolution and neighborhood size on digital soil survey,” Geoderma 137, 58–69 (2006). https://doi.org/10.1016/j.geoderma.2006.07.002

    Article  Google Scholar 

  51. R. Sørensen and J. Seibert, “Effects of DEM resolution on the calculation of topographical indices: TWI and its components,” J. Hydrol. 347 (1), 79–89 (2007). https://doi.org/10.1016/j.jhydrol.2007.09.001

    Article  Google Scholar 

  52. J. A. Taylor, F. Jacob, M. Galleguillos, L. Prévot, N. Guix, and P. Lagacherie, “The utility of remotely-sensed vegetative and terrain covariates at different spatial resolutions in modelling soil and watertable depth (for digital soil mapping),” Geoderma 193–194, 83–93 (2013). https://doi.org/10.1016/j.geoderma.2012.09.009

    Article  Google Scholar 

  53. J. A. Thompson, J. C. Bell, and C. A. Butler, “Digital elevation model resolution effects on terrain attribute calculation and quantitative soil-landscape modeling,” Geoderma 100 (1), 67–89 (2001). https://doi.org/10.1016/S0016-7061(00)00081-1

    Article  Google Scholar 

  54. C. Tsui, C. C. Tsai, and Z. S. Chen, “Soil organic carbon stocks in relation to elevation gradients in volcanic ash soils of Taiwan,” Geoderma 209–210, 119–127 (2013). https://doi.org/10.1016/j.geoderma.2013.06.013

    Article  Google Scholar 

  55. M. Verij Kazemi and E. Fazeli Veysari, “A new optimization algorithm inspired by the quest for the evolution of human society: human felicity algorithm,” Expert Syst. Appl. 193, 116468 (2022). https://doi.org/10.1016/j.eswa.2021.116468

    Article  Google Scholar 

  56. R. A. Viscarra Rossel, R. Webster, E. N. Bui, and J. A. Baldock, “Baseline map of organic carbon in Australian soil to support national carbon accounting and monitoring under climate change,” Global Change Bio-l. 20 (9), 2953–2970 (2014). https://doi.org/10.1111/gcb.12569

    Article  Google Scholar 

  57. B. Wang, J. M. Gray, C. M. Waters, M. R. Anwar, S. E. Orgill, A. L. Cowie, P. Y. Feng, and D. L. Liu, “Modelling and mapping soil organic carbon stocks under future climate change in south-eastern Australia,” Geoderma 405, 115442 (2022). https://doi.org/10.1016/j.geoderma.2021.115442

    Article  Google Scholar 

  58. S. Wang, K. Adhikari, Q. B. Wang, X. X. Jin, and H. D. Li, “Role of environmental variables in the spatial distribution of soil carbon (C), nitrogen (N), and C:N ratio from the northeastern coastal agroecosystems in China,” Ecol. Indic. 84, 263–272 (2018). https://doi.org/10.1016/j.ecolind.2017.08.046

    Article  Google Scholar 

  59. S. Wang, Q. L. Zhuang, Q. B. Wang, X. X. Jin, and C. L. Han, “Mapping stocks of soil organic carbon and soil total nitrogen in Liaoning Province of China,” Geoderma 305, 250–263 (2017). https://doi.org/10.1016/j.geoderma.2017.05.048

    Article  Google Scholar 

  60. L. F. Wei, Z. R. Yuan, Y. F. Zhong, L. F. Yang, X. Hu, and Y. X. Zhang, “An improved gradient boosting regression tree estimation model for soil heavy metal (arsenic) pollution monitoring using hyperspectral remote sensing,” Appl. Sci. 9 (9), 1943 (2019). https://doi.org/10.3390/app9091943

    Article  Google Scholar 

  61. K. Were, D. T. Bui, Ø. B. Dick, and B. R. Singh, “A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape,” Ecol. Indic. 52, 394–403 (2015). https://doi.org/10.1016/j.ecolind.2014.12.028

    Article  Google Scholar 

  62. M. Wiesmeier, F. Barthold, B. Blank, and I. Kögel-Knabner, “Digital mapping of soil organic matter stocks using random forest modeling in a semi-arid steppe ecosystem,” Plant Soil 340 (1), 7–24 (2011). https://doi.org/10.1007/s11104-010-0425-z

    Article  Google Scholar 

  63. M. Wiesmeier, R. Hübner, F. Barthold, P. Spörlein, U. Geuß, E. Hangen, A. Reischl, B. Schilling, M. von Lützow, and I. Kögel-Knabner, “Amount, distribution and driving factors of soil organic carbon and nitrogen in cropland and grassland soils of southeast Germany (Bavaria),” Agric., Ecosyst. Environ. 176, 39–52 (2013). https://doi.org/10.1016/j.agee.2013.05.012

    Article  Google Scholar 

  64. M. Wiesmeier, L. Urbanski, E. Hobley, B. Lang, M. von Lützow, E. Marin-Spiotta, B. van Wesemael, E. Rabot, M. Ließ, N. Garcia-Franco, U. Wollschläger, H. Vogel, and I. Kögel-Knabner, “Soil organic carbon storage as a key function of soils - a review of drivers and indicators at various scales,” Geoderma 333, 149–162 (2019). https://doi.org/10.1016/j.geoderma.2018.07.026

    Article  Google Scholar 

  65. S. Wu, J. Li, and G. H. Huang, “A study on DEM-derived primary topographic attributes for hydrologic applications: sensitivity on elevation data resolution,” App-l. Geogr. 28 (3), 210–223 (2008).https://doi.org/10.1016/j.apgeog.2008.02.006

    Article  Google Scholar 

  66. Y. M. Xu, S. E. Smith, S. Grunwald, A. Abd-Elrahman, and S. P. Wani, “Evaluating the effect of remote sensing image spatial resolution on soil exchangeable potassium prediction models in smallholder farm settings,” J. Environ. Manage. 200, 423–433 (2017). https://doi.org/10.1016/j.jenvman.2017.06.017

    Article  Google Scholar 

  67. L. Yang, X. L. He, F. X. Shen, C. H. Zhou, A. X. Zhu, B. B. Gao, Z. Y. Chen, and M. C. Li, “Improving prediction of soil organic carbon content in croplands using phenological parameters extracted from NDVI time series data,” Soil Tillage Res. 196, 104465 (2020). https://doi.org/10.1016/j.still.2019.104465

    Article  Google Scholar 

  68. R. M. Yang, G. L. Zhang, F. Liu, Y. Y. Lu, F. Yang, F. Yang, M. Yang, Y. G. Zhao, and D. C. Li, “Comparison of boosted regression tree and random forest models for mapping topsoil organic carbon concentration in an alpine ecosystem,” Ecol. Indic. 60, 870–878 (2016). https://doi.org/10.1016/j.ecolind.2015.08.036

    Article  Google Scholar 

  69. Y. P. Yang, J. C. Luo, Q. T. Huang, W. Wu, and Y. W. Sun, “Weighted double-logistic function fitting method for reconstructing the high-quality Sentinel-2 NDVI time series data set,” Remote Sens. 11 (20), 2342 (2019). https://doi.org/10.3390/rs11202342

    Article  Google Scholar 

  70. M. Zangiabadi, M. Gorji, M. Shorafa, S. Khavari Khorasani, and S. Saadat, “Effect of soil pore size distribution on plant-available water and least limiting water range as soil physical quality indicators,” Pedosphere 30 (2), 253–262 (2020). https://doi.org/10.1016/s1002-0160(17)60473-9

    Article  Google Scholar 

  71. M. Zeraatpisheh, S. Ayoubi, Z. Mirbagheri, M. R. Mosaddeghi, and M. Xu, “Spatial prediction of soil aggregate stability and soil organic carbon in aggregate fractions using machine learning algorithms and environmental variables,” Geoderma Reg. 27, e00440 (2021). https://doi.org/10.1016/j.geodrs.2021.e00440

    Article  Google Scholar 

  72. W. Zhang and D. R. Montgomery, “Digital elevation model grid size, landscape representation, and hydrologic simulations,” Water Resour. Res. 30 (4), 1019–1028 (1994). https://doi.org/10.1029/93WR03553

    Article  Google Scholar 

  73. M. S. Zhao, D. G. Rossiter, D. C. Li, Y. G. Zhao, F. Liu, and G. L. Zhang, “Mapping soil organic matter in low-relief areas based on land surface diurnal temperature difference and a vegetation index,” Ecol. Indic. 39, 120–133 (2014). https://doi.org/10.1016/j.ecolind.2013.12.015

    Article  Google Scholar 

  74. T. Zhou, Y. Geng, C. Ji, X. Xu, H. Wang, J. Pan, J. Bumberger, D. Haase, and A. Lausch, “Prediction of soil organic carbon and the C:N ratio on a national scale using machine learning and satellite data: a comparison between Sentinel-2, Sentinel-3 and Landsat-8 images,” Sci. Total Environ. 755 (Pt 2), 142661 (2021). https://doi.org/10.1016/j.scitotenv.2020.142661

    Article  Google Scholar 

  75. T. Zhou, Y. Geng, J. Chen, J. Pan, D. Haase, and A. Lausch, “High-resolution digital mapping of soil organic carbon and soil total nitrogen using DEM derivatives, Sentinel-1 and Sentinel-2 data based on machine learning algorithms,” Sci. Total Environ. 729, 138244 (2020). https://doi.org/10.1016/j.scitotenv.2020.138244

    Article  Google Scholar 

  76. Y. Zhou, S. C. Chen, A. X. Zhu, B. F. Hu, Z. Shi, and Y. Li, “Revealing the scale- and location-specific controlling factors of soil organic carbon in Tibet,” Geoderma 382, 114713 (2021). https://doi.org/10.1016/j.geoderma.2020.114713

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We gratefully appreciate the support from the National Natural Science Foundation of China (no. 41971050), the Natural Science Foundation of Fujian Province in China (no. 2020J05027), and the Science and Technology Innovation Fund Project of Fujian Agriculture and Forestry University (no. KFB22074XA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Zhang.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, T., Chen, J.Y., Li, Y.F. et al. Resolution Effect of Soil Organic Carbon Prediction in a Large-Scale and Morphologically Complex Area. Eurasian Soil Sc. 56 (Suppl 2), S260–S275 (2023). https://doi.org/10.1134/S1064229323601762

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229323601762

Keywords:

Navigation