Skip to main content
Log in

Spatial Variability of Alpine Meadow Soils in Gannan Tibetan Autonomous Prefecture, Gansu Province, China

  • SOIL CHEMISTRY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

We study studied the alpine meadow soil in Gannan Prefecture. Geostatistical analysis showed that Circular [soil total nitrogen (STN), soil total potassium (STK), soil available phosphorus (SAP)] model, index [bulk density (BD), soil water content (SWC), soil organic carbon (SOC), soil available nitrogen (SAN)] model and Gaussian [soil total phosphorus (STP), soil available potassium (SAK)] model is universal Kriging Method semi-variation function optimization fitting model. In the model, the spatial correlation is weak to medium, and SOC, STN, STP, STK, SAN, SAP, SAK, and SWC have specific spatial trend effects. Then principal component analysis was used to obtain three key factors (SOC, BD, and SWC) affecting soil quality, which accounted for 81.91% of the total variation of soil quality. These factors were taken as the minimum data set (MDS) and soil quality index (SQI) was calculated. According to SQI, the whole region was divided into three soil management zones (SMZs). Recommendations are made for different management areas to ensure resource conservation and reduce environmental footprint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. A. Haghverdi, B. G. Leib, R. A. Washington-Allen, P. D. Ayers, and M. J. Buschermohle, “Perspectives on delineating management zones for variable rate irrigation,” Comput. Electron. Agric. 117, 154–167 (2015). https://doi.org/10.1016/j.compag.2015.06.019

    Article  Google Scholar 

  2. C. J. Schollenberger and R. H. Simon, “Determination of exchange capacity and exchangeable bases in soil by ammonium acetate method,” Soil Sci. 59 (1), 13–24 (1945). https://doi.org/10.1093/jaoac/12.2.146

    Article  Google Scholar 

  3. C. Ning, Z. Yangjian, Z. Juntao, L. Junxiang, L. Yaojie, Z. Jiaxing, C. Nan, H. Ke, and W. Li, “Nonlinear response of productivity and diversity of alpine meadow communities to degradation,” Chin. J. Plant Ecol. 42 (1), 50–65 (2018). https://doi.org/10.17521/cjpe.2017.0252

    Article  Google Scholar 

  4. C. Yanming, M. Hongbin, M. Qing, M. Ziyuan, L. Jindi, Z. Yao, and P. Wendong, “Effects of different grazing patterns on soil carbon and nitrogen storage and sequestration in desert steppe,” Acta Agrestia Sin. 31 (10), 18–27 (2022). https://doi.org/10.11686/cyxb2021412

    Article  Google Scholar 

  5. D. L. Karlen, M. J. Mausbach, J. W. Doan, R. G. Cline, R. F. Harris and G. E. Schuman, “Soil quality: a concept, definition and framework for evaluation,” Soil Sci. Soc. Am. J. 61 (1), 4–10 (1997). https://doi.org/10.2136/sssaj1997.03615995006100010001x

    Article  Google Scholar 

  6. D. Lei, S. G. Zhouping, W. Gaolin, and C. Xiaofeng, “Effects of grazing exclusion on carbon sequestration in China’s grassland,” Earth Sci. Rev. 173, 84–95 (2017). https://doi.org/10.1016/j.earscirev.2017.08.008

    Article  Google Scholar 

  7. D. Wei, L. Yuhuan, F. Weijun, J. Peikun, Z. Keli, and L. Yongfu, “Spatial variability of soil nutrients in forest areas: A case study from subtropical China,” J. Plant Nutr. Soil Sci. 181 (6), 827–835 (2018). https://doi.org/10.1002/jpln.201800134

    Article  Google Scholar 

  8. F. H. Westheimer, “Why nature chose phosphate,” Science 235 (4793), 1173 (1987). https://doi.org/10.1126/science.2434996

    Article  Google Scholar 

  9. G. Junjing and C. Yohay, “A global meta-analysis of grazing effects on plant richness,” Agric. Ecosyst. Environ. 302 (107072), (2020). https://doi.org/10.1016/j.agee.2020.107072

  10. G. S. Bhunia, P. K. Shit, and R. Chattopadhyay, “Assessment of spatial variability of soil properties using geostatistical approach of lateritic soil (West Bengal, India),” Ann. Agric. Sci. 16 (4), 436–443 (2018). https://doi.org/10.1016/j.still.2017.01.006

    Article  Google Scholar 

  11. J. G. Han, Y. Zhang, C. J. Wang, W. M. Bai, Y. R. Wang, G. D. Han, L. H. Li, “Rangeland degradation and restoration management in China,” Rangeland J. 30 (2), 233–239 (2008). https://doi.org/10.1071/RJ08009

    Article  Google Scholar 

  12. I. Bogunovic, M. Mesic, Z. Zgorelee, A. Jurisic, and D. Bilandzija, “Spatial variation of soil nutrients on sandy-loamy soil,” Soil Tillage Res. 144, 174–183 (2014). https://doi.org/10.1016/j.still.2014.07.020

    Article  Google Scholar 

  13. I. Matejovic, “Determination of carbon and nitrogen in samples of various soils by the dry combustion,” Commun. Soil Sci. Plant Analy. 28 (17–18), 1499–1511 (1997). https://doi.org/10.1080/00103629709369892

    Article  Google Scholar 

  14. L. Honglin, G. Lu, Z. Meiling, L. Zengyuan, X. Lina, and H. Yi, “Stoichiometric characteristics of soil in an Oasis on the northern edge of Tarim Basin, China,” Acta Pedol. Sin. 52 (6), 1345–1355 (2015). https://doi.org/10.11766/trxb201411220585

    Article  Google Scholar 

  15. L. Qi, M. Hongbin, Y. Hongqian, W. Li, S. Yan, X. Dongmei, and X. Yinghzong, “Effect of rotational grazing methods on soil aggregates and organic carbon characteristics in desert grassland,” China J. Appl. Ecol. 30 (9), 3028–3038 (2019). https://doi.org/10.13287/j.1001-9332.201909.010

    Article  Google Scholar 

  16. L. Yaqiong, H. Yanshuang, Z. Yian, and B. Tao, “Effects of different measures for improving degraded grassland on the soil carbon and nitrogen stocks in steppe of inner Mongolia,” Acta Prataculturae Sin. 38 (5), 91–95 (2016). https://doi.org/10.16742/j.zgcdxb.2016-05-15

    Article  Google Scholar 

  17. L. Yuzhen, S. Caicai, L. Wenting, Y. Xiaoxia, F. Bin, S. Guang, Z. Xue, L. Caidi, Y. Zengzeng, G. Jie, Z. Xiaofang, Y. Yang, Z. Chunping, and D. Quanming, “Response of keystone species changes in alpine grassland plant communities to different herbivore assemblage grazing,” Acta Ecol. Sin. 42 (18), 7529–7540 (2022). https://doi.org/10.5846/stxb202110072757

    Article  Google Scholar 

  18. L. Xiaoyan, W. Dongyan, R. Yongxing, W. Zongming, and Z. Yongheng, “Soil quality assessment of croplands in the black soil zone of Jilin Province, China: establishing a minimum data set model,” Ecol. Indic. 107 (105251), (2019). https://doi.org/10.1016/j.ecolind

  19. M. S. Askari and N. M. Holden, “Quantitative soil quality indexing of temperate arable management systems,” Soil Tillage Res. 150, 57–67 (2015). https://doi.org/10.1016/j.still.2015.01.010

    Article  Google Scholar 

  20. M. Jifu, C. Yiping, Z. Jie, W. Kaibo, and W. Junhua, “Soil quality should be accurate evaluated at the beginning of lifecycle after land consolidation for eco-sustainable development on the Loess Plateau,” J. Cleaner Prod. 267 (122244), (2020). https://doi.org/10.1016/j.jclepro.2020.122244

  21. N. Huayue and G. Jixi, “Research progress on ecological impact and spreading mechanism of weeds on degraded grassland,” Chin. J. Grassl. 44 (7), 101–113 (2022). https://doi.org/10.16742/j.zgcdxb.20210317

    Article  Google Scholar 

  22. R. B. Harris, “Rangeland degradation on the Qinghai-Tibetan plateau: a review of the evidence of its magnitude and causes,” J. Arid Environ. 74 (1), 1–12 (2010). https://doi.org/10.1016/j.jaridenv.2009.06.014

    Article  Google Scholar 

  23. R. J. Huggett, “Soil chronosequences, soil development, and soil evolution: a critical review,” Catena 32 (3–4), 155–172 (1998). https://doi.org/10.1016/S0341-8162(98)00053-8

    Article  Google Scholar 

  24. R. K. Singh, A. Singh, and P. C. Sharma, Successful Adaptations in Salt Affected Agroecosystems of India (2019).

  25. R. M. Lark, “Estimation of the variograms of soil properties by the method of moments and maximum likelihood; a comparison,” Eur. J. Soil Sci. 51 (4), 717–728 (2000). https://doi.org/10.1046/j.1365-2389.2000.00345.x

    Article  Google Scholar 

  26. R. Srivastava, M. Sethi, R. K. Yadav, D. S. Bundela, M. Singh, S. Chattaraj, S. K. Singh, R. A. Nasre, S. R. Bishnoi, S. Dhale, D. S. Mohekar, and A. K. Barthwal, “Visible-near infrared reflectance spectroscopy for rapid characterization of salt-affected soil in the Indo-Gangetic Plains of Haryana,” J. Indian Soc. Remote Sens. 45 (2), 307–315 (2017). https://doi.org/10.1007/s12524-016-0587-0

    Article  Google Scholar 

  27. S. Ayoubi, A. Mehnatkesh, A. Jalalian, K. L. Sahrawat, and M. Gheysari, “Relationships between grain protein, Zn, Cu, Fe and Mn contents in wheat and soil and topographic attributes,” Arch. Agron. Soil Sci. 60 (5), 625–638 (2014). https://doi.org/10.1080/03650340.2013.825899

    Article  Google Scholar 

  28. S. Jian, Z. Zhenchao, and D. Shikui, “Adaptive management of alpine grassland ecosystems over Tibetan Plateau,” Pratac. Sci. 36 (4), 933–938 (2019). https://doi.org/10.11829/j.issn.1001-0629.2019-0224

    Article  Google Scholar 

  29. S. Jiandong, Y. Yulin, C. Bing, and W. Hongqi, “Spatial variability of soil total salt, pH and total alkalinity,” Soils 37 (1), 69–73 (2005). https://doi.org/10.13758/j.cnki.tr.2005.01.014

    Article  Google Scholar 

  30. S. Nawar, R. Corstanje, G. Halcro, D. Mulla, and A. Mouazen, “Delineation of soil management zones for variable-rate fertilization: a review,” Adv. Agron. 143, 175–245 (2017). https://doi.org/10.1016/bs.agron.2017.01.003

    Article  Google Scholar 

  31. S. Ravi, D. D. Breshears, T. E. Huxman, and P. D’Odorico, “Land degradation in drylands: interactions among hydrologic-aeolian erosion and vegetation dynamics,” Geomorphology 116 (3–4), 236–245 (2010). https://doi.org/10.1016/j.geomorph.2009.11.023

    Article  Google Scholar 

  32. S. S. Andrews, D. L. Karlen, and J. P. Mitchell, “A comparison of soil quality indexing methods for vegetable production systems in Northern California,” Agric. Ecosyst. Environ. 90 (1), 25–45 (2002). https://doi.org/10.1016/S0167-8809(01)00174-8

    Article  Google Scholar 

  33. Z. Sun, Y. B. Wang, G. H. Liu, and Z. Gao, “Heterogeneity analysis of soil particle size distribution in the process of degradation of alpine meadow in the permafrost regions based on multifractal theory,” J. Glaciol. Geocryology 37 (4), 980–990 (2015). https://doi.org/10.7522/j.issn.1000-0240.2015.0109

    Article  Google Scholar 

  34. T. Zhen, S. Chende, G. Quanzhou, S. Yanmin, Y. Weixi, and L. Yingnian, “Soil organic carbon storage and vertical distribution of alpine meadows on the Tibetan Plateau,” Acta Geol. Sin. (Engl. Ed.) 7, 720–728 (2006). https://doi.org/10.3321/j.issn:0375-5444.2006.07.006

  35. W. Jianbing and Y. Wenjie, “Impacts of climate change on the pasture grass in border area at the north-east of Qinghai-Xizang Plateau,” J. Anhui Agric. Sci. 38 (26), 14535–14537 (2010). https://doi.org/10.13989/j.cnki.0517-6611.2010.26.122

    Article  Google Scholar 

  36. W. Li, G. Yantai, M. Wiesmeier, Z. Guiqin, Z. Ruiyang, H. Guodong, and H. Fujiang, “Grazing exclusion-An effective approach for naturally restoring degraded grasslands in Northern China,” Land Degrad. Dev. 29 (12), 4439–4456 (2018). https://doi.org/10.1002/ldr.3191

    Article  Google Scholar 

  37. W. Xing, L. Huixia, F. Bojie, J. Tiantian, and L. Guohua, “Study on soil characteristics of alpine grassland in different degradation levels in headwater regions of Three River in China,” Chin. J. Grassland 35 (3), 77–84 (2013). https://doi.org/10.3969/j.issn.1673-5021.2013.03.014

    Article  Google Scholar 

  38. W. Yuqin, W. Hongsheng, S. Meiling, and B. Gensheng, “Effect of autumn clipping on vegetation and soil ecological properties of degraded alpine grassland,” Acta Prataculturae Sin. 42 (3), 61–69 (2020). https://doi.org/10.16742/j.zgcdxb.20190120

    Article  Google Scholar 

  39. X. Jinyu, P. Xiaopeng, and X. Changlin, “Effect of grazing prohibition on restoration of degraded grassland,” Pratac. Sci. 32 (1), 138–145 (2015). https://doi.org/10.11829/j.issn.1001-0629.2013-0730

    Article  Google Scholar 

  40. X. Yudan, D. Shikui, S. Hao, X. Jiannan, L. Shuai, G. Xiaoxia, and W. Shengnan, “Degradation significantly decreased the ecosystem multifunctionality of three alpine grasslands: evidences from a large-scale survey on the Qinghai-Tibetan Plateau,” Acta Pedol. Sin. 18 (2), 357–366 (2021). https://doi.org/10.1016/j.agee.2014.11.015

    Article  Google Scholar 

  41. Y. Jinsong, “Development and prospect of the research on salt-affected soils in China,” Acta Pedol. Sin. 45 (5), 837–845 (2008). https://doi.org/trxb10.11766/200806280509

    Google Scholar 

  42. Y. Pujia, L. Qiang, J. Hongtao, L. Guangdi, Z. Wei, S. Xiangjin, D. Baba, and Z. Daowei, “Effect of cultivation on dynamics of organic and inorganic carbon stocks in Songnen plain,” Agron. J. 106 (5), 1574–1582 (2014). https://doi.org/10.2134/agronj14.0113

    Article  Google Scholar 

  43. Y. Pujia, L. Shiwei, Y. Hongtao, F. Gaohua, and Z. Daowei, “Short-term land use conversions influence the profile distribution of soil salinity and sodicity in northeastern China,” Ecol. Indic. 88, 79–87 (2018). https://doi.org/10.1016/j.ecolind.2018.01.017

    Article  Google Scholar 

  44. Y. Yali, W. Yuqin, B. Gensheng, W. Hongsheng, L. Shixiong, S. Meiling, S. Baolian, and W. Yuncun, “Characteristics of soil microbes and enzyme in degraded alpine meadows,” Chin. J. Appl. Ecol. 28 (12), 3881–3890 (2017). https://doi.org/10.13287/j.1001-9332.201712.040

    Article  Google Scholar 

  45. Y. Yei, P. Xiaoyu, Y. Shuqi, Z. Yunbin, Z. Cai, and H. Yong, “Effects of land use types on soil organic carbon and soil labile organic carbon in the karst faulted basin of southern Yunnan,” Acta Ecol. Sin. 42 (17), 7105–7117 (2022). https://doi.org/10.5846 /stxb202108112216

    Google Scholar 

  46. Z. Han, O. Zhencheng, and Z. Xiaomin, “Effects of different land use types on ecological stoichiometry characteristics of carbon, nitrogen and phosphorus in farmland soils in Jiangxi Province, China,” Acta Sci. Circumstantiae 39 (3), 939–951 (2019). https://doi.org/10.13671/j.hjkxxb.2018.0383

    Article  Google Scholar 

  47. Z. Lu, W. Xiangtao, W. Jie, L. Lirong, L. Shilong, L. Guobin, and Z. Chao, “Alpine meadow degradation depresses soil nitrogen fixation by regulating plant functional groups and diazotrophic community composition,” Plant Soil, 1–17 (2022). https://doi.org/10.1007/s11104-014-2167-9

  48. Z. Qipeng, F. Ruyao, D. Cuiyan, Z. Hongjuan, S. Menghan, and W. Qian, “Slope aspect effects on plant community characteristics and soil properties of alpine meadows on Eastern Qinghai-Tibetan plateau,” Ecol. Indic. 143, 109400 (2022). https://doi.org/10.1016/j.ecolind.2022.109400

    Article  Google Scholar 

  49. Z. Weibin, “Analysis of soil moisture change law in Huangshan City,” Soil Water Conser. China 9, 55–58 (2018). https://doi.org/10.14123/j.cnki.swcc.2018.0206

  50. Z. Zilu, Z. Xihong, L. Feng, and S. Xiaojun, “Spatial heterogeneity of soil readily available potassium and its influencing factors in Western Chongqing Hilly Area,” Acta Pedol. Sin. 57 (2), 307–315 (2020). https://doi.org/10.11766/trxb201902250030

    Google Scholar 

Download references

Funding

We acknowledge the financial support of the National Natural Science Foundation of China (31760135), Gansu Provincial Natural Science Foundation (20JR10RA089), and Gansu Provincial Forestry and Grassland Science and Technology Innovation (KJCX2021005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minxia Liu.

Ethics declarations

All the authors do not have any possible conflicts of interest. The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Wang, S., Mi, J. et al. Spatial Variability of Alpine Meadow Soils in Gannan Tibetan Autonomous Prefecture, Gansu Province, China. Eurasian Soil Sc. 56 (Suppl 2), S276–S286 (2023). https://doi.org/10.1134/S1064229323601592

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229323601592

Keywords:

Navigation