Skip to main content
Log in

Formation of Acid Sulfate Soils under the Influence of Acid Mine Waste in the Taiga Zone

  • DOKUCHAEV YOUTH READINGS
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The research focuses on the features of acid sulfate soils formed in southern taiga on the territory of the closed Kizel Coal Basin in Perm Krai. The studied soils are Technosols (Thionic, Gleyic, Toxic), formed in the area of acid mine water outflow from the pit, and Technosols (Thionic, Toxic), formed as a result of acid mine water runoff from a coal dump that contains sulfide minerals. The purpose of the research was to establish the degree of technogenic soil transformation in comparison to natural soils and to conduct an ecological and geochemical assessment of those soils. The research used both conventional and customized methods. Inductively coupled plasma mass spectrometry was used to determine the concentration of heavy metals, trace elements, and iron in soil. It has been established, that the morphological and chemical properties of Technosols (Thionic, Gleyic, Toxic) and Technosols (Thionic, Toxic) differ. The continuous inflow of acid mine water to the surface is a more important transformation factor than intermittent dump runoff. Thus, the formation of a new technogenic layer, the production of an iron-bearing crust on the surface, gleyzation, and acidity (\({\text{p}}{{{\text{H}}}_{{{{{\text{H}}}_{{\text{2}}}}{\text{O}}}}}\) 2.3–4.6) are typical of Technosols (Thionic, Gleyic, Toxic). Technosols (Thionic, Toxic) retain the profile of the background raw-humified gray-humus soil while also exhibiting acidity (\({\text{p}}{{{\text{H}}}_{{{{{\text{H}}}_{{\text{2}}}}{\text{O}}}}}\) 2.8–3.1), clay loss, and no evidence of gleyzation along the profile. There is no heavy metal or microelement pollution in the studied soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. A. Abliz, Q. Shi, M. Keyimu, and R. Sawut, “Spatial distribution, source, and risk assessment of soil toxic metals in the coal-mining region of northwestern China,” Arabian J. Geosci. 11, 793 (2018). https://doi.org/10.1007/s12517-018-4152-8

    Article  Google Scholar 

  2. O. D. Arefieva, N. P. Shapkin, N. V.Gruschakova, and N. A. Prokuda, “Mine water: chemical composition and treatment,” Water Pract. Technol. 11 (3), 540–546 (2016). https://doi.org/10.2166/wpt.2016.060

    Article  Google Scholar 

  3. R. Barthen, M. L. K. Sulonen, S. Peräniemi, R. Jain, and A.-M. Lakaniemi, “Removal and recovery of metal ions from acidic multi-metal mine water using waste digested activated sludge as biosorbent,” Hydrometallurgy 207, 105770 (2022). https://doi.org/10.1016/j.hydromet.2021.105770

    Article  Google Scholar 

  4. J. M. Bigham and D. K. Nordstrom, “Iron and aluminum hydroxysulfates from acid sulfate waters, in sulfate minerals: crystallography, geochemistry & environmental significance,” Rev. Mineral. Geochem. 40, 303–350 (2000). https://doi.org/10.2138/rmg.2000.40.7

    Article  Google Scholar 

  5. R. Brinkman and L. J. Pons, “Recognition and prediction of acid sulphate soil conditions,” in Acid Sulphate Soils. Proceedings of an International Symposium, Ed. by H. Dost (International Institute for Land Reclamation and Improvement, Publication 18, Wageningen, 1973), pp. 169–203.

  6. Classification and Diagnostic System of Russian Soils (Oikumena, Smolensk, 2004) [in Russian]

  7. D. S. Fanning, M. C. Rabenhorst, and R. W. Fitzpatrick, “Historical developments in the understanding of acid sulfate soils,” Geoderma 308, 191–206 (2017). https://doi.org/10.1016/j.geoderma.2017.07.006

    Article  Google Scholar 

  8. J. C. Fernandez-Caliani, C. Barba-Brioso, I. Gonzalez, and E. Galan, “Heavy metal pollution in soils around the abandoned mine sites of the Iberian Pyrite Belt (Southwest Spain),” Water, Air, Soil Pollut. 200, 211–226 (2009). https://doi.org/10.1007/s11270-008-9905-7

    Article  Google Scholar 

  9. S. Fernández-Landero, J. C. Fernández-Caliani, M. I. Giráldez, E. Morales, C. Barba-Brioso, and I. González, “Soil contaminated with hazardous waste materials at Rio Tinto Mine (Spain) Is a persistent secondary source of acid and heavy metals to the environment,” Minerals 13 (4), 456 (2023). https://doi.org/10.3390/min13040456

    Article  Google Scholar 

  10. N. F. Fetisova, “Study of migration forms of metals in rivers affected by acid mine drainage of the Kizel Coal Basin,” Izv. Tomsk. Politekh. Univ. Inzhiniring Georesursov 332 (1), 141–152 (2021). [in Russian]https://doi.org/10.18799/24131830/2021/1/3007

    Article  Google Scholar 

  11. M. M. Grantcharova and J. C. Fernández-Caliani, “Soil acidification, mineral neoformation and heavy metal contamination driven by weathering of sulphide wastes in a Ramsar Wetland,” Appl. Sci. 12, 249 (2022). https://doi.org/10.3390/app12010249

    Article  Google Scholar 

  12. J. L. Guerrero, N. Suárez-Vaz, D. C. Paz-Gómez, S. M. Pérez-Moreno, and J. P. Bolívar, “Spatiotemporal evolution of U and Th isotopes in a mine effluent highly polluted by Acid Mine Drainage (AMD),” J. Hazard. Mater. 447, 130782 (2023). .https://doi.org/10.1016/j.jhazmat.2023.130782

    Article  Google Scholar 

  13. P. Hulisz, S. Ł. Różański, A. Boman, and M. Rauchfleisz, “Can acid sulfate soils from the southern Baltic zone be a source of potentially toxic elements (PTEs)?,” Sci. Total Environ. 825, 154003 (2022). https://doi.org/10.1016/j.scitotenv.2022.154003

    Article  Google Scholar 

  14. IUSS Working Group WRB, World Reference Base for Soil Resources 2014. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. World Soil Resources Reports No. 106 (FAO, Rome, 2014).

    Google Scholar 

  15. Y. Jiao, C. Zhang, P. Su, Y. Tang, Z. Huang, and T. Ma, “A review of acid mine drainage: formation mechanism, treatment technology, typical engineering cases and resource utilization,” Process Saf. Environ. Prot. 170, 1240–1260 (2023). https://doi.org/10.1016/j.psep.2022.12.083

    Article  Google Scholar 

  16. A. A. Karakulieva and M. A. Kondrateva, “Properties of embryoses of coal mines dumps of the Kizelovsky basin,” Antropog. Transform. Prir. Sredy 4, 156–159 (2018).

    Google Scholar 

  17. N. S. Kasimov and D. V. Vlasov, “Clarkes of chemical elements as comparison standards in ecogeochemistry,” Vestn. Mosk. Univ., Ser. Geogr. 2, 7–17 (2015).

    Google Scholar 

  18. I. S. Kopylov, “Regularities of formation of soil landscapes of the priurals, their geochemical features and anomalies”, Sovrem. Probl. Nauki Obraz. 4, 395 (2013).

    Google Scholar 

  19. A. S. Kostin, P. P. Krechetov, O. V. Chernitsova, and E. V. Terskaya, “Data on physico-chemical characteristics and elemental composition of gray forest soils (Greyzemic Phaeozems) in natural-technogenic landscapes of Moscow brown coal basin,” Data Brief 35, 106817 (2021). .https://doi.org/10.1016/j.dib.2021.106817

    Article  Google Scholar 

  20. B. Kríbek, I. Nyambe, O. Sracek, M. Mihaljevic, and I. Knésl, “Impact of mining and ore processing on soil, drainage and vegetation in the Zambian Copperbelt mining districts: a review,” Minerals 13 (3), 384 (2023). https://doi.org/10.3390/min13030384

    Article  Google Scholar 

  21. L. Lei, C. Song, X. Xie, Y. Li, and F. Wang, “Acid mine drainage and heavy metal contamination in groundwater of metal sulfide mine at arid territory (BS mine, Western Australia),” Trans. Nonferrous Met. Soc. China 8 (20), 1488–1493 (2010). https://doi.org/10.1016/S1003-6326(09)60326-5

    Article  Google Scholar 

  22. L. Lewińska-Preis, E. Szram, M. J. Fabiańska, et al., “Selected ions and major and trace elements as contaminants in coal-waste dump water from the Lower and Upper Silesian Coal Basins (Poland),” Int. J. Coal Sci. Technol. 8, 790–814 (2021). https://doi.org/10.1007/s40789-021-00421-9

    Article  Google Scholar 

  23. A. Lindgren, I. K. Jonasson, C. Öhrling, and M. Giese, “Acid sulfate soils and their impact on surface water quality on the Swedish west coast,” J. Hydrol.: Reg. Stud. 40, 101019, (2022). https://doi.org/10.1016/j.ejrh.2022.101019

    Article  Google Scholar 

  24. W. Liu, S. Liu, C. Tang, et al., “Evaluation of surface water quality after mine closure in the coal-mining region of Guizhou, China,” Environ Earth Sci. 427 (79), (2020). https://doi.org/10.1007/s12665-020-09167-0

  25. P. Madejón, D. Caro-Moreno, C. M. Navarro-Fernández, S. Rossini-Oliva, and T. Marañón, “Rehabilitation of waste rock piles: impact of acid drainage on potential toxicity by trace elements in plants and soil,” J. Environ. Manage. 280, 111848 (2021). https://doi.org/10.1016/j.jenvman.2020.111848

    Article  Google Scholar 

  26. N. G. Maksimovich and S. V. Pyankov, The Kizel Coal Basin: Ecological Problems and Solutions (Permsk. Gos. Nats. Issled. Univ., Perm, 2018), p. 288 [in Russian].

    Google Scholar 

  27. L. L. G. Martinez and C. Poleto, “Assessment of diffuse pollution associated with metals in urban sediments using the geoaccumu-lation index (Igeo),” J. Soils Sediments 7 (14), 1251–1257 (2014). https://doi.org/10.1007/s11368-014-0871-y

    Article  Google Scholar 

  28. S. K. G. Mendonça, E. M. V. de Moraes, X. L. Otero, T. O. Ferreira, M. M. Corrêa, J. E. S. de Sousa, C. W. A. do Nascimento, L.V. de Melo Wanderley Neves, and V.S. de Souza Junior, “Occurrence and pedogenesis of acid sulfate soils in northeastern Brazil,” Catena 196, 104937 (2021). https://doi.org/10.1016/j.catena.2020.104937

    Article  Google Scholar 

  29. E. Menshikova, S. Blinov, P. Belkin, et al., “Dumps of the Kizel coal basin as a potential source of rare and rare-Earth elements,” in Science and Global Challenges of the 21st Century—Science and Technology. Perm Forum 2021. Lecture Notes in Net-works and Systems (Springer, Cham, 2022), Vol. 342, pp. 352–361. https://doi.org/10.1007/978-3-030-89477-1_35

  30. N. V. Mitrakova, E. A. Khayrulina, S. M. Blinov, and A. A. Perevoshchikova, “Efficiency of acid sulphate soils reclamation in coal mining areas,” J. Min. Inst. 260 (2), 266–278 (2023). https://doi.org/10.31897/PMI.2023.31

    Article  Google Scholar 

  31. A. Nyman, A. Johnson, C. Yu, M. Dopson, and M. Åstrom, “Multi-element features of active acid sulfate soils across the Swedish coastal plains,” Appl. Geochem. 152, 105653 (2023). https://doi.org/10.1016/j.apgeochem.2023.105653

    Article  Google Scholar 

  32. B. Pandey, M. Agrawal, and S. Singh, “Effects of coal mining activities on soil properties with special reference to heavy metals,” in Geostatistical and Geospatial Approaches for the Characterization of Natural Resources in the Environment, Ed. by N. Raju (Springer, Cham, 2016). https://doi.org/10.1007/978-3-319-18663-4_56

    Book  Google Scholar 

  33. S. S. Potapov and S. M. Blinov, “Geoecological situation in Kizel Coal Basinon the basis of the technogenic mineralisationsstudy,” Ural. Mineral. Sb., No. 12, 204–219 (2002).

  34. S. V. Pyankov, N. G. Maximovich, E. A. Khayrulina, et al., “Monitoring acid mine drainage’s effects on surface water in the Kizel coal basin with Sentinel-2 satellite images,” Mine Water Environ. 40, 606–621 (2021). https://doi.org/10.1007/s10230-021-00761-7

    Article  Google Scholar 

  35. P. K. Sahoo, S. M. Equeenuddin, and M. A. Powell, “Trace elements in soils around coal mines: current scenario, impact and available techniques for management,” Curr. Pollut. Rep. 2, 1–14 (2016). https://doi.org/10.1007/s40726-016-0025-5

    Article  Google Scholar 

  36. A. U. Siddiqui, M. K. Jain, and R. E. Masto, “Pollution evaluation, spatial distribution, and source apportionment of trace metals around coal mines soil: the case study of eastern India,” Environ. Sci. Pollut. Res. 27, 10822–10834 (2020). https://doi.org/10.1007/s11356-019-06915-z

    Article  Google Scholar 

  37. K. N. Singh and D. Narzary, “Geochemical characterization of mine overburden strata for strategic overburden-spoil management in an opencast coal mine,” Environ. Challenges 3, 100060 (2021). https://doi.org/10.1016/j.envc.2021.100060

    Article  Google Scholar 

  38. N. P. Solntseva, “Technogenic sulfate landscapes: dynamics and mechanisms of soil transformation, basic models,” Inform. Bull. RFFI Nauki Zemle 6, (1998).

  39. T.-S. Sukitprapanon, A. Suddhiprakarn, I. Kheoruenromne, and R. J. Gilkes, “Forms of acidity in potential, active and post-active acid sulfate soils in Thailand,” Thai J. Agric. Sci. 48 (3), 133–146 (2015).

    Google Scholar 

  40. A. M. Trueman, M. J. McLaughlin, L. M. Mosley, and R. W. Fitzpatrick, “Composition and dissolution kinetics of jarosite-rich segregations extracted from an acid sulfate soil with sulfuric material,” Chem. Geol. 543, 119606 (2020). .https://doi.org/10.1016/j.chemgeo.2020.119606

    Article  Google Scholar 

  41. S. Turhan, A. M. K Garad, A. Hançerlioğulları, A. Kurnaz, E. Gören, C. Duran, M. Karataşlı, A. Altıkulaç, G. Savacı, and A. Aydın, “Ecological assessment of heavy metals in soil around a coal-fired thermal power plant in Turkey,” Environ. Earth Sci. 79 (134), (2020). https://doi.org/10.1007/s12665-020-8864-1

  42. E. Ushakova, E. Menshikova, S. Blinov, B. Osovetsky, and P. Belkin, “Environmental assessment impact of acid mine drainage from Kizel coal basin on the Kosva Bay of the Kama Reservoir (Perm krai, Russia),” Water 14 (727), (2022). https://doi.org/10.3390/w14050727

  43. C. Yiwei, L. Guijian, W. Lei, K. Yu, and Y. Jianli, “Occurrence and fate of some trace elements during pyrolysis of Yima coal China,” Energy Fuels 22 (6), 3877–3882, (2008). https://doi.org/10.1021/ef800485w

    Article  Google Scholar 

Download references

Funding

This work was supported by the Perm Scientific and Educational Center Rational Subsoil Use, 2023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Mitrakova.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

This study was presented at the International Scientific Conference XXVI Dokuchaev Youth Readings Soil Science Matrix (http://www.dokuchaevskie.ru/).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitrakova, N.V., Khayrulina, E.A., Poroshina, N.V. et al. Formation of Acid Sulfate Soils under the Influence of Acid Mine Waste in the Taiga Zone. Eurasian Soil Sc. 56 (Suppl 2), S183–S193 (2023). https://doi.org/10.1134/S106422932360152X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106422932360152X

Keywords:

Navigation