Skip to main content
Log in

Contents of Radionuclides (226Ra, 232Th, 40K, and 137Cs) in Soils on Moraine Deposits in the European Russia Sampled in 1926–2017

  • DOKUCHAEV YOUTH READINGS
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The results of integrated studies of the contents of natural radionuclides (NRNs) 226Ra, 232Th, and 40K and technogenic 137Cs in soils on moraine deposits available from the Bioresource Collection at the Dokuchaev Central Soil Museum are reported. Soils were sampled before the commencement of nuclear tests, during intensive tests, and in recent years. The assayed soils belong to 11 reference soil groups according to the WRB system. Organic, humus (including formerly plow), humus-eluvial, eluvial, and subeluvial horizons and soil-forming rocks were analyzed. The NRNs contents in soil-forming rock amount to 13.4–36.0 Bq/kg (mean specific activity M = 22.2 Bq/kg and standard deviation σ = 7.4 Bq/kg) for 226Ra; 18.9–49.0 Bq/kg (M = 32.1 ± 10.4 Bq/kg) for 232Th; and 417–890 Bq/kg (M = 695 ± 151 Bq/kg) for 40K. In the organic horizons, NRNs are detectable only in the samples of 2004 and 2017 in the amounts of 7.0–43.0 Bq/kg 226Ra (M = 20.9 ± 14.4 Bq/kg), 10.0–21.2 Bq/kg 232Th (M = 14.0 ± 8.1), and 50–620 Bq/kg 40K (M = 291 ± 227 Bq/kg). Narrower ranges and lower mean content (except for 40K) in the humus and eluvial horizons are recorded in the former plow horizon (P) as compared with the AY horizon and in the EL horizon as compared with the AEL and BEL horizons. The NRN content correlates with the particle size fractions in a statistically significant manner. Technogenic 137Cs is detectable only in the recent soil samples. According to its content, the soils fall into two groups. The first group of soils (pits 261 and MLK-4, Lisino education and experimental forestry station) displays a relatively high 137Cs activity in the 0–5-cm layer and a penetration depth of 10 cm. The second group comprises the remaining soils. The cesium content there does not exceed 54 Bq/kg and penetration depth, 20 cm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Notes

  1. The Shapiro–Wilk test values were calculated using https:// www.statskingdom.com/shapiro-wilk-test-calculator.html.

REFERENCES

  1. A. S. Abdulaeva, “Radioactivity of rocks, soils, natural waters of Dagestan and the effective doses caused by them,” Yug Ross.: Ekol., Razvit. 3, 89–106 (2012). https://doi.org/10.18470/1992-1098-2012-3-89-106

    Article  Google Scholar 

  2. Activity of Radionuclides in Counting Samples. Measurement Technique on Gamma-Ray Spectrometers using the Software “SpectraLine” (Mendeleevo, 2014).

  3. R. M. Aleksakhin, A. V. Vasiliev, V. G. Dikarev, etc., Agricultural Radiology, Ed. by R. M. Aleksakhin and N. A. Kornev (Ekologiya, Moscow, 1992) [in Russian].

  4. Yu. A. Alexandrov, Fundamentals of Radiation Ecology (Marii. Gos. Univ., Yoshkar-Ola, 2007) [in Russian].

    Google Scholar 

  5. B. F. Aparin, G. A. Kasatkina, and N. N. Matinyan, Red Data Soils Book of the Leningrad Region (Aeroplan, St. Petersburg, 2007) [in Russian].

  6. S. I. Arbuzov and L. P. Rikhvanov, Geochemistry of Radioactive Elements (Izd. Tomsk. Politekh. Inst., Tomsk, 2010) [in Russian].

    Google Scholar 

  7. V. B. Babikov, “Swamps in the forests of Russia and their use,” Izv. Vyssh. Uchebn. Zaved., Lesn. Zh. 6, 9–19 (2014).

    Google Scholar 

  8. O. V. Balun and A. S. Boytsov, “The state of land reclamation in the Novgorod region,” Agrophysics 2 (10), 28–33 (2013).

    Google Scholar 

  9. V. I. Baranov, N. G. Morozova, K. G. Kunasheva, et al., “Geochemistry of some natural radioactive elements in soils,” Pochvovedenie 8, 11–20 (1963).

    Google Scholar 

  10. V. A. Beznosikov, E. D. Lodygin, and I. I. Shuktomova, “Artificial and natural radionuclides in soils of the southern and middle taiga zones of Komi Republic,” Eurasian Soil Sci. 50 (7), 814–819 (2017). https://doi.org/10.1134/S1064229317050039

    Article  Google Scholar 

  11. N. P. Chizhikova, E. M. Korobova, V. G. Linnik, and E. S. Chechetko, “The functional significance of petrographic and mineralogical composition of alluvial soil in distribution and migration of radionuclides in river basins,” Teor. Prikl. Ekol. 2, 71–77 (2012).

    Google Scholar 

  12. Classification and Diagnostic System of Russian Soils (Oikumena, Smolensk, 2004).

  13. P. J. Coughtrey and M. C. Thorne, Radionuclide Distribution and Transport in Terrestrial and Aquatic Ecosystems: a Critical Review of Data (A.A. Balkema, Rotterdam, 1983).

    Google Scholar 

  14. V. V. Deryagin, K. V. Kablova, S. G. Levina, A. A. Sutyagin, and V. A. Musatov, “The features of accumulation and distribution of chemical pollutants in soils of the catchment area of Tygish,” Radiats. Biol., Radioekol. 57 (2), 210–219 (2017).

    Google Scholar 

  15. E. A. Dmitriev, Mathematical Statistics in Soil Science (Mosk. Gos. Univ., Moscow, 1995) [in Russian].

    Google Scholar 

  16. M. Dowdall, J. P. Gwynn, and G. Shaw, “Radioecology of terrestrial arctic ecosystems,” in Radioactivity in the Terrestrial Environment, Ed. by G. Shaw (2007), Vol. 10, pp. 157–176. https://doi.org/10.1016/S1569-4860(06)10007-8

    Book  Google Scholar 

  17. V. F. Drichko, B. E. Krisyuk, I. G. Travnikova, et al., “Frequency distribution of 226Ra, 232Th, and 40K concentrations in various soils,” Pochvovedenie 9, 75–80 (1977).

    Google Scholar 

  18. I. V. Efremov, N. N. Rakhimova, and E. L. Yanchuk, “Features of migration of radionuclides cesium-137 and strontium-90 in the soil-plant system,” Vestn. Orenb. Gos. Univ. 12, 42–46 (2005).

    Google Scholar 

  19. M. E. Farago, Plants and the Chemical Elements. Biochemistry, Uptake, Tolerance and Toxicity, Ed. by M. E. Farago (VCH, Weinheim, New York, Basel, Tokyo, 1994), p. 294.

    Book  Google Scholar 

  20. S. Forsberg, A. Rosen, V. Fernandez, and H. Juhan, “Migration of 137Cs and 90Sr in undisturbed soil profiles under controlled and close-to-real conditions,” J. Environ. Radioact. 50, 235–252 (2000). https://doi.org/10.1016/S0265-931X(00)00015-1

    Article  Google Scholar 

  21. E. I. Gagarina, Lithological Factor of Soil Formation (on the Example of the North-West of the Russian Plain) (S.-Peterb. Gos. Univ., St. Petersburg, 2004) [in Russian].

    Google Scholar 

  22. Geochemistry of Rare, Rare Earth and Radioactive Elements in Rock and Ore-Forming Processes (Nauka, Sib. Otd., Novosibirsk, 1989) [in Russian].

  23. Geochemistry of Soil Radionuclides, Ed. by P.-C. Zhang and P. V. Brady (Soil Sci. Soc. Am., Madison, 2002).

    Google Scholar 

  24. M. E. P. Gomes, L. M. O. Martins, L. J. P. F. Neves, etc., “Natural radiation and geochemical data for rocks and soils, in the North International Duoro Cliffs (NE Portugal),” J. Geochem. Explor. 30, 60–64 (2013). https://doi.org/10.1016/j.gexplo.2013.03.001

    Article  Google Scholar 

  25. T. E. Hakonson, “The distribution and transport of radionuclides in dryland ecosystems,” in Radioactivity in the Terrestrial Environment, Ed. by G. Shaw (2007), Vol. 10, pp. 177–191. https://doi.org/10.1016/S1569-4860(06)10008-X

    Book  Google Scholar 

  26. R. M. Aleksakhin, N. P. Arkhipov, R. M. Barkhudarov, etc., Heavy Natural Radionuclides in the Biosphere: Migration and Biological Effects on Populations and Biogeocenoses (Nauka, Moscow, 1990) [in Russian].

  27. J. Koarashi, M. Atarashi-Andoh, T. Matsunaga, and T. Sato, “Factors affecting vertical distribution of Fukushima accident-derived radiocesium in soil under different land-use conditions,” J. Sci. Total Environ. 431, 392–401 (2012). https://doi.org/10.1016/j.scitotenv.2012.05.041

    Article  Google Scholar 

  28. A. V. Konoplev, V. N. Golosov, V. I. Yoschenko, K. Nanba, Y. Onda, T. Takase, and Y. Wakiyama, “Vertical distribution of radiocesium in soils of the area affected by the Fukushima Dai-ichi nuclear power plant accident,” Eurasian Soil Sci. 49 (5), 570–580 (2016). https://doi.org/10.1134/S1064229316050082

    Article  Google Scholar 

  29. D. N. Lipatov, D. V. Manakhov, A. I. Shcheglov, and O. B. Tsvetnova, “Distribution of 226Ra, 232Th, and 40K in dark gray forest soils with different carbonate horizon depth,” Moscow Univ. Soil Sci. Bull. 74 (3), 123–130 (2019).

    Article  Google Scholar 

  30. D. V. Manakhov and Z. N. Egorova, “Speciation of radium-226 in podzols of northeastern Sakhalin in the impact zone of the oil field,” Eurasian Soil Sci. 47 (6), 608–612 (2014).

    Article  Google Scholar 

  31. P. K. Manigandan and N. M. Manikandan, “Migration of radionuclide in soil and plants in the Western Ghats environment,” Iran. J. Radiat. Res. 6 (1), 7–12 (2008). http://www.ijrr.com/files/site1/user_files_fad21f/admin-A-10-1-266-a34fc11.pdf.

    Google Scholar 

  32. A. N. Marei, R. M. Barkhudarov, and N. Ya. Novikova, Global Fallout of Caesium-137 and Man (Atomizdat, Moscow, 1974) [in Russian].

    Google Scholar 

  33. Z. N. Markina, V. V. Vecherov, S. I. Marchenko, and V. I. Shoshin, “The effect of field-protective forest stands on the redistributionof 137Cs in agro forest landscape,” Radiats. Biol., Radioekol. 58 (4), 425–443 (2018). https://doi.org/10.1134/S0869803118040100

    Article  Google Scholar 

  34. E. V. Mingareeva, B. F. Aparin, S. V. Korovin, N. I. Sanzharova, and E. Yu. Sukhacheva, “Natural radionuclides (226Ra, 232Th, and 40K) in soil-forming rocks in the European part of Russia,” Biol. Bull. (Moscow) 49 (12), 2397–2409 (2022). https://doi.org/10.1134/S1062359022120147

    Article  Google Scholar 

  35. A. A. Moiseev and P. V. Ramzaev, Cesium-137 in the Biosphere (Atomizdat, Moscow, 1975) [in Russian].

    Google Scholar 

  36. Novgorod agricultural wetland experimental station. Results of 10 years of work of the station and its hydrological department,” in Proceedings of the North-Western Regional Agricultural Experimental Station, Ed. by P. S. Savkin (NKZ. Novgorodsk. S.-kh. Bolotnaya Opyt. Stantsiya, 1926), Vol. 4, No. 1.

  37. A. I. Perel’man, Biokosnye Sistemy Zemli (Bio-Abiotic Earth Systems) (Nauka, Moscow, 1977) [in Russian].

  38. G. A. Podvorko, Candidate’s Dissertation in Biology (Obninsk, 2004).

  39. B. F. Aparin, B. V. Babikov, G. A. Kasatkina, etc., Polygons for Soil-Ecological Monitoring of Forest Ecosystems in the Taiga Zone: Account. Allowance for Universities (Lan, St. Petersburg, 2022) [in Russian].

  40. A. I. Popov, V. M. Igamberdiev, and Yu. V. Alekseev, Statistical Processing of Experimental Data (S.-Peterb. Gos. Univ., St. Petersburg, 2009 [in Russian].

    Google Scholar 

  41. N. G. Rachkova and I. I. Shuktomova, The Role of Sorbents in the Transformation of Uranium, Radium and Thorium Compounds in Podzolic Soil (Nauka, St. Petersburg, 2006) [in Russian].

    Google Scholar 

  42. N. G. Rachkova, I. I. Shuktomova, and A. I. Taskaev, “The state of natural radionuclides of uranium, radium, and thorium in soils,” Eurasian Soil Sci. 43 (6), 651–658 (2010). https://doi.org/10.1134/S1064229310060050

    Article  Google Scholar 

  43. E. M. Samoilova, Soil-Forming Rocks (Mosk. Gos. Univ., Moscow, 1991) [in Russian].

    Google Scholar 

  44. N. V. Sasina and A. I. Yankov, “Redistribution of 137Cs and 90Sr - activity in the “soil-pore solution” system on the example of the soils of Belarus,” Litosfera 23 (2), 137–145 (2005).

    Google Scholar 

  45. P. S. Savkin, Novgorod Experimental Field for the Culture of Swamps: a Report on the Work for 1918 (Novgorod, 1919), No. 6.

  46. V. P. Seredina, “Geochemical features of potassium wire in soils,” Vestn. Tomsk. Gos. Univ. Biol. 1 (1), 106–118 (2007).

    Google Scholar 

  47. V. P. Seredina, Potassium and Soil Formation (Tomsk. Univ., Tomsk, 2012) [in Russian].

    Google Scholar 

  48. I. I. Shuktomova, N. A. Titaeva, A. I. Taskaev, etc., “238U, 232Th and 226Rh behaviour in tundra soils,” Pochvovedenie 8, 49–53 (1983).

    Google Scholar 

  49. A. N. Silantiev and I. G. Shkuratova, Detection of Industrial Soil Pollution and Atmospheric Fallout against the Background of Global Pollution (Gidrometeoizdat, Leningrad, 1984) [in Russian].

    Google Scholar 

  50. Soils of the Leningrad Region, Ed. by V. C. Pestryakov (Lenizdat, 1973) [in Russian].

    Google Scholar 

  51. Sources, Effects and Risks of Ionizing Radiation, United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) 2017 Report. United Nations (UN) (New York, 2018). https://doi.org/10.18356/7e4f1c5a-en

  52. F. Strebl, S. Ehlken, M. H. Gerzabek, and G. Kirchner, “Behaviour of radionuclides in soil / crop systems following contamination,” in Radioactivity in the Terrestrial Environment, Ed. by G. Shaw (2007), Vol. 10, pp. 19–42. https://doi.org/10.1016/S1569-4860(06)10002-9

    Book  Google Scholar 

  53. V. G. Sychev, M. I. Lunev, P. M. Orlov, and N. M. Belous, Chernobyl: Radiation Monitoring of Agricultural Land and Agrochemical Aspects Reduce the Consequences of Radioactive Contamination of the Soil (VNIIA, Moscow, 2016) [in Russian].

    Google Scholar 

  54. The Atlas of Recent and Predictable Aspects of Consequences of Chernobyl Accident on Polluted Territories of Russia and Belarus (APRA Russia - Belarus), Ed. by Yu. A. Izrael and I. M. Bogdevich (Infosphere” Foundation – NIA. Nature, Moscow–Minsk, 2009).

  55. H. Thorring, L. Skuterud, and E. Steinnes, “Influence of chemical composition of precipitation on migration of radioactive caesium in naturals soils,” J. Environ. Radioact. 134, 114–119 (2014). https://doi.org/10.1016/j.jenvrad.2014.03.006

    Article  Google Scholar 

  56. N. A. Titaeva, Nuslear Geochemistry (Mosk. Gos. Univ., Moscow, 2000) [in Russian].

    Google Scholar 

  57. G. D. Unkanzhinov, B. Ts. Uskov, L. A. Boldyreva, and A. G. Tertyshnaya, “Natural radionuclides in soils of reference sites of the Republic of Kalmykia,” Plodorodie 6, 43–45 (2012).

    Google Scholar 

  58. M. R. Usikalu, P. P. Makela, M. Malik, K. D. Oyeyemi, and O. O. Adewoyin, “Assessment of geogenic natural radionuclide contents of soil samples collected from Ogun State, South western, Nigeria,” Int. J. Radiat. 13 (4), 355–361(2015). https://doi.org/10.7508/ijrr.2015.04.009

  59. Theory and Practice of Chemical Analysis of Soils. Monograph, Ed. by L. A. Vorob’eva (GEOS, Moscow, 2006) [in Russian].

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The author thanks Prof. B.F. Aparin and Prof. N.I. Sanzharova for their assistance in the work.

The study was performed at the Dokuchaev Central Soil Museum (Federal Research Center Dokuchaev Soil Science Institute) and the All-Russia Institute of Radiology and Agroecology (National Research Center Kurchatov Institute).

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Mingareeva.

Ethics declarations

The author of this work declares that she has no conflicts of interest.

Additional information

Translated by G. Chirikova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

This study was presented at the International Scientific Conference XXVI Dokuchaev Youth Readings Soil Science Matrix (http://www.dokuchaevskie.ru/).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mingareeva, E.V. Contents of Radionuclides (226Ra, 232Th, 40K, and 137Cs) in Soils on Moraine Deposits in the European Russia Sampled in 1926–2017. Eurasian Soil Sc. 56 (Suppl 2), S147–S160 (2023). https://doi.org/10.1134/S106422932360149X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106422932360149X

Keywords:

Navigation