Skip to main content
Log in

Effect of Biochar on the Content of Heavy Metals in Agrosoddy-Podzolic Sandy Loamy Soil: Laboratory Vegetation Experiment

  • DOKUCHAEV YOUTH READINGS
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Application of biochar to the soil may become an effective and environmentally safe way to reduce the bioavailability of heavy metals in polluted soils. To confirm this hypothesis, a 40-day-long laboratory vegetation experiment was performed to assess the effect of three types of biochar (of bird droppings, apple pomace, and sunflower husk as the source material) applied at the rate of 20 t/ha on the concentration of heavy metals in agrosoddy-podzolic sandy loamy soil of different cultivation rates used for growing vetch-oat mixture. The mobile forms of copper, zinc, lead, and cadmium were determined after preliminary extraction by an ammonium acetate buffer solution with pH 4.8 on a Varian AA240FS atomic absorption spectrometer. By the end of the laboratory experiment, a significant increase (p < 0.05) in the copper concentration was found both in moderately cultivated soil (MS) and in strongly cultivated soil (SS) in case of using biochar of bird droppings and apple pomace. The application of biochar of sunflower husks did not affect the copper concentration in MS, but increased it in SS. There was a gradual decrease in the zinc content in soil samples with biochar of apple pomace and sunflower husk from the beginning to the end of the experiment (by 10–12% on average) contrary to an increase by 12% in the variant with biochar of bird droppings. A significant (p < 0.05) decrease in the lead content was revealed in all the experimental variants, while the introduction of biochar of sunflower husks increased the cadmium concentration by 76–92%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. E. V. Balashov and E. Ya. Rizhiya, “The effect of biochar on the bulk density and water-holding capacity of sandy loam soddy-podzolic soil of varying degrees of cultivation,” Agrofizika, No. 2, 1–6 (2020). https://doi.org/10.25695/AGRPH.2020.02.01

    Article  Google Scholar 

  2. I. A. Dubrovina, M. G. Yurkevich, and V. A. Sidorova, “The effect of biochar and fertilizers on the development of barley plants and agrochemical parameters of sod-podzolic soils in a growing season,” Tr. Karel. Nauchn. Tsentra Ross. Akad. Nauk, No. 3, 31–44 (2020). https://doi.org/10.17076/EB1087

    Article  Google Scholar 

  3. B. R. Grigor’yan, A. N. Grachev, V. I. Kulagina, L. M. Sungatullina, T. G. Kol’tsova, and S. S. Ryazanov, “The effect of biochar on plant growth, microbiological and physicochemical parameters of low-humus soil under growing season conditions,” Vestn. Kazan. Tekhnol. Univ., No. 11, 185–189 (2016).

  4. V. B. Il’in, Heavy Metals in the Soil–Plant System (Nauka, Novosibirsk, 1991) [in Russian].

    Google Scholar 

  5. Methods for Determination of Heavy Metals in Diluted Wastewater (Kolos, Moscow, 1989) [in Russian].

  6. V. G. Mineev, Environmental Problems of Agrochemistry (Mosk. Gos. Univ., Moscow, 1988) [in Russian].

    Google Scholar 

  7. I. M. Mukhina, Candidate’s Dissertation in Biology (St. Petersburg, 2017).

  8. G. N. Koptsik, ''Modern approaches to remediation of heavy metal polluted soils: a review,'' Eurasian Soil Sci. 47 (7), 707–722 (2014). https://doi.org/10.1134/S1064229314070072

    Article  Google Scholar 

  9. Rules for Soil Protection in St. Petersburg (Russian Geoecological Center, Branch of Urangeo, St. Petersburg, 2006).

  10. V. A. Sedykh, A. D. Kashanskii, E. G. Khimina, and P. Yu. Karaush, “Changes in the mobility of heavy metals in soddy-podzolic soils depending on the degree of their humus content and the use of high doses of organic fertilizers,” Izv. Timiryazevsk. S-kh. Akad., No. 3, 1–8 (2011).

  11. G. A. Sokolik, S. V. Ovsyannikova, and M. V. Popenya, “Changes in the forms of cadmium, lead and uranium after adding biochar to soils,” Zh. Beloruss. Gos. Univ., No. 1, 40–51 (2021). https://doi.org/10.46646/2521-683X/2021-1-40-51

  12. M. Ahmad, A. U. Rajapaksha, J. E. Lim, M. Zhang, N. Bolan, and D. Mohan, “Biochar as a sorbent for contaminant management in soil and water: a review,” Chemosphere 99, 19–33 (2014). https://doi.org/10.1016/j.chemosphere.2013.10.071

    Article  Google Scholar 

  13. O. Babalola, O. Oziegbe, and O. O Olawole, “Significance of biochar application to the environment and economy,” Ann. Agric. Sci. 64 (2), 222–236 (2020). https://doi.org/10.1016/j.aoas.2019.12.006

    Article  Google Scholar 

  14. T. Bousdra, S. G. Papadimou, and E. E. Golia, “The use of biochar in the remediation of Pb, Cd, and Cu-contaminated soils. The Impact of biochar feedstock and preparation conditions on its remediation capacity,” Land 12 (3), 383 (2023). https://doi.org/10.3390/land12020383

    Article  Google Scholar 

  15. M. S. Carbone, C. J. Still, A. R. Ambrose, T. E. Dawson, A. P. Williams, C. M. Boot, S. M. Schaeffer, and J. P. Schimel, “Seasonal and episodic moisture controls on plant and microbial contributions to soil respiration,” Oecologia 167 (1), 265–278 (2011). https://doi.org/10.1007/s00442-011-1975-3

    Article  Google Scholar 

  16. K. Y. Chan, E. L. van Zwieten, I. Meszaros, A. Downie, and S. Joseph, “Agronomic values of greenwaste biochar as a soil amendment,” Aust. J. Soil Res. 45 (8), 629–634 (2007). https://doi.org/10.1071/SR07109

    Article  Google Scholar 

  17. R. Chatterjee, B. Sajjadi, W-Y. Chen, D. L. Mattern, N. Hammer, V. Raman, and A. Dorris, “Effect of pyrolysis temperature on physico chemical properties and acoustic-based amination of biochar for efficient CO2 dAdsorption,” Front. Energy Res. 8, 85 (2020). https://doi.org/10.3389/fenrg.2020.00085

    Article  Google Scholar 

  18. Q. Deng, D. Hui, G. Chu, X. Han, and Q. Zhang, “Rain-induced changes in soil CO2 flux and microbial community composition in a tropical forest of China,” Sci. Rep. 7, 5539 (2017). https://doi.org/10.1038/s41598-017-06345-2

    Article  Google Scholar 

  19. Y. Ding, Y. Liu, S. Liu, Z. Li, X. Tan, X. Huang, G. Zeng, L. Zhou, and B. Zheng, “Biochar to improve soil fertility. A review,” Agron. Sustainable Dev. 36 (2), 36 (2016). https://doi.org/10.1007/s13593-016-0372-z

    Article  Google Scholar 

  20. J. Jiang, R. K. Xu R, T. Y. Jiang, and Z. Li, “Immobilization of Cu(II), Pb(II) and Cd(II) by the addition of rice straw derived biochar to a simulated polluted Ultisol,” J. Hazard. Mater. 229 (230), 145–150 (2012). https://doi.org/10.1016/j.jhazmat.2012.05.086

    Article  Google Scholar 

  21. M. Hussain, M. Farooq, A. Nawaz, A. Al-Sadi, Z. Solaiman, S. Alghamdi, A. Jawad, Y. S. Ok, and K. Siddique, “Biochar for crop production: potential benefits and risks,” J. Soils Sediments 17 (2), 686–716 (2017). .https://doi.org/10.1007/s11368-016-1360-2

    Article  Google Scholar 

  22. S. Joseph, M. Camps-Arbestain, Y. Lin, P. Munroe, C. H. Chia, J. Hook, L. V Zwieten, S. Kimber, A. Cowie, B. P. Singh, J. Lehmann, N. Foidl, R. J. Smernik, and J. E. Amonette, “An investigation into the reactions of biochar in soil,” Aust. J. Soil Res. 48, 501–515 (2010). https://doi.org/10.1071/SR10009

    Article  Google Scholar 

  23. S. Joseph, A. Cowie, L. V Zwieten, L. N. Bolan, A. Budai, W. Buss, M. Cayuela, E. Graber, J. Ippolito, Y. Kuzyakov, Y. Luo, Y. S. Ok, K. N. Palansooriya, J. Shepherd, S. Stephens, Z. Weng, and J. Lehmann, “How biochar works, and when it doesn’t: a review of mechanisms controlling soil and plant responses to biochar,” GCB Bioenergy 13, 1731–1764 (2021). https://doi.org/10.1111/gcbb.12885

    Article  Google Scholar 

  24. M. Ghorbani, H. Asadi, and S. Abrishamkesh, “Effects of rice husk biochar on selected soil properties and nitrate leaching in loamy sand and clay soil,” Int. Soil Water Conserv. Res. 7 (3), 258–265 (2019). https://doi.org/10.1016/j.iswcr.2019.05.005

    Article  Google Scholar 

  25. M. Guo, Z. He, and S. M. Uchimiya, “Introduction to biochar as an agricultural and environmental amendment,” in Agricultural and Environmental Applications of Biochar: Advances and Barriers (2016), Vol. 63, pp. 1–14. https://doi.org/10.2136/sssaspecpub63.2014.0034

    Book  Google Scholar 

  26. M. Lebrun, F. Miard, R. Nandillon, N. Hattab-Hambli, J. C. Léger, G. S. Scippa, D. Morabito, and S. Bourgerie, “Influence of biochar particle size and concentration on Pb and As availability in contaminated mining soil and phytoremediation potential of Poplar assessed in a mesocosm experiment,” Water, Air, Soil Pollut. 232, 3 (2021). https://doi.org/10.1007/s11270-020-04942-y

    Article  Google Scholar 

  27. M. Li, S. A. Messele, Y. Boluk, and M. G. El-Din, “Isolated cellulose nanofibers for Cu (II) and Zn (II) removal: performance and mechanisms,” Carbohydr. Polym. 221 (1), 231–241 (2019). https://doi.org/10.1016/j.carbpol.2019.05.078

    Article  Google Scholar 

  28. L. C. A. Melo, A. P. Puga, A. Coscione, L. Beesley, C. A. Abreu, and O. A. Camargo, “Sorption and desorption of cadmium and zinc in two tropical soils amended with sugarcane-straw-derived biochar,” J. Soils Sediments 16, 226–234 (2016). https://doi.org/10.1007/s11368-015-1199-y

    Article  Google Scholar 

  29. S. Mehmood, M. Rizwan, S. Bashir, A. Ditta, O. Aziz, L. Yong, Z. Dai, M. Akmal, W. Ahmed, M. Adeel, M. Imtiaz, and M. Tu, “Comparative effects of biochar, slag and ferrous–Mn ore on lead and cadmium immobilization in soil,” Bull. Environ. Contam. Toxicol. 100, 286–292 (2018). https://doi.org/10.1007/s00128-017-2222-3

    Article  Google Scholar 

  30. J. H. Park, G. K. Choppala, N. S. Bolan, J. W. Chung, and T. Cuasavathi, “Biochar reduces the bioavailability and phytotoxicity of heavy metals,” Plant Soil 348, 439–451 (2011). https://doi.org/10.1007/s11104-011-0948-y

    Article  Google Scholar 

  31. A. Puga, C. Abreu, L. Melo, and L. Beesley, “Biochar application to a contaminated soil reduces the availability and plant uptake of zinc, lead and cadmium,” J. Environ. Manage. 159, 86–93 (2015). https://doi.org/10.1016/j.jenvman.2015.05.036

    Article  Google Scholar 

  32. B. Saletnik, G. Zaguła, M. Bajcar, M. Tarapatskyy, G. Bobula, and C. Puchalski, “Biochar as a multifunctional component of the environment. Review,” Appl. Sci. 9 (6), 1139 (2019). https://doi.org/10.3390/app9061139

    Article  Google Scholar 

  33. F. Sui, J. Zuo, L. Chen., L. Li, G. Pan, D. Crowley, “Biochar effects on uptake of cadmium and lead by wheat in relation to annual precipitation: a 3-year field study,” Environ. Sci. Pollut. Res. 25, 3368–3377 (2018). https://doi.org/10.1007/s11356-017-0652-4

    Article  Google Scholar 

  34. J. Sun, Q. Fan, J. Ma, L. Cui, G. Quan, J. Yan, L. Wu, K. Hina, B. Abdul, and H. Wang, “Effects of biochar on cadmium (Cd) uptake in vegetables and its natural downward movement in saline-alkali soil,” Environ. Pollut. Bioavailability 32, 36–46 (2020). https://doi.org/10.1080/26395940.2020.1714487

    Article  Google Scholar 

  35. P. Wu, P. X. Cui, G. D. Fang, Y. Wang, S. Q. Wang, D. M. Zhou, W. Zhang, and Y. Y. Wang, “Biochar decreased the bioavailability of Zn to rice and wheat grains: insights from microscopic to macroscopic scales,” Sci. Total Environ. 621, 160–167 (2018). https://doi.org/10.1016/j.scitotenv.2017.11.236

    Article  Google Scholar 

  36. X. Xu, X. Cao, L. Zhao, H. Wang, H. Yu, and B. Gao, “Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar,” Environ. Sci. Pollut. Res. 20, 358–368 (2013). https://doi.org/10.1007/s11356-012-0873-5

    Article  Google Scholar 

  37. M. Xu and H. Shang, “Contribution of soil respiration to the global carbon equation,” J. Plant Physiol. 203, 16–28 (2016). https://doi.org/10.1016/j.jplph.2016.08.007

    Article  Google Scholar 

  38. A. R. Zimmerman, B. Gao, and M-Y. Ahn, “Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils,” Soil Biol. Biochem. 43, 1169–1179 (2011). https://doi.org/10.1016/j.soilbio.2011.02.005

    Article  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. M. Kostetskii.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by I. Bel’chenko

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

This study was recommended by the Organizing Committee of the International Scientific Conference XXVI Dokuchaev Youth Readings Soil Science Matrix (http://www. dokuchaevskie.ru/our-conferences/конференция-2023).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kostetskii, D.M., Moskvin, M.A. & Rizhiya, E.Y. Effect of Biochar on the Content of Heavy Metals in Agrosoddy-Podzolic Sandy Loamy Soil: Laboratory Vegetation Experiment. Eurasian Soil Sc. 56 (Suppl 2), S227–S234 (2023). https://doi.org/10.1134/S1064229323601440

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229323601440

Keywords:

Navigation