Skip to main content
Log in

Exchangeable Manganese in Diverse Rice-Cultivated Top Soils (0–15 cm) of Sri Lanka

  • DEGRADATION, REHABILITATION, AND CONSERVATION OF SOILS
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Manganese (Mn) is an essential mineral element required for the growth of plants. However, the current status of Mn in Sri Lankan rice-cultivated lowlands is not known. Hence, this study was conducted to determine the (i) spatial differentiation of exchangeable Mn in top soils, and (ii) examine the interactive effects of the agro-climatic zone (ACZ), soil order and water source in determining the exchangeable Mn concentration in lowland paddy fields in Sri Lanka. A total of 9137 soil samples representing six ACZs, six soil orders, and three water sources were collected. Soil Mn was extracted using 0.01 M CaCl2 and measured using an Inductively Coupled Plasma Mass Spectrophotometry. Exchangeable Mn concentration ranged between 0.72–288.8 mg kg−1 with a mean of 23.02 mg kg−1. Samples collected from Wet zone Low country had lower Mn concentration than other ACZs. Among the soil orders, Alfisols and Entisols had higher Mn concentrations while Histosols reported the lowest. Rainfed paddy fields retained more Mn than supplementary irrigated fields in the Dry zone Low country. Moreover, Mn concentration was negatively correlated with soil pH, annual rainfall and grain yield. Therefore, ACZ, soil, and water source-dependеnt Mn management strategies are needed when improving Mn nutrition of rice in Sri Lanka.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. S. Balasooriya, S. Diyabalanage, S. K. Yatigammana, O. A. Ileperuma, and R. Chandrajith, “Major and trace elements in rice paddy soils in Sri Lanka with special emphasis on regions with endemic chronic kidney disease of undetermined origin,” Environ. Geochem. Health 44 (6), 1841–1855 (2022).

    Article  Google Scholar 

  2. J. M. R. S. Bandara, D. M. A. N. Senevirathna, D. M. R. S. B. Dasanayake, V. Herath, J. M. R. P. Bandara, T. Abeysekara, and K. H. Rajapaksha, “Chronic renal failure among farm families in cascade irrigation systems in Sri Lanka associated with elevated dietary cadmium levels in rice and freshwater fish (Tilapia),” Environ. Geochem. Health 30, 465–478 (2008).

    Article  Google Scholar 

  3. B. Bastin and V. K. Venugopal, “Available nutrient status of some red soils (Alfisols) from different regions in Kerala,” Agric. Res. J. Kerala 24 (1), 22–29 (1986).

    Google Scholar 

  4. P. Bhattacharya, S. Sengupta, and S. Halder, “Characterization and delineation of micronutrient pools in some selected Inceptisols and Alfisols of West Bengal,” Int. J. Chem. Stud. 8 (2), 732–746 (2020).

    Article  Google Scholar 

  5. R. Chandrajith, C. Dissanayake, and H. Tobschall, “Geochemistry of trace elements in paddy (rice) soils of Sri Lanka-implications for iodine deficiency disorders (IDD),” Environ. Geochem. Health 27 (1), 55–64 (2005).

    Article  Google Scholar 

  6. C. Chukwuma Sr, “Evaluating baseline data for copper, manganese, nickel and zinc in rice, yam, cassava and guinea grass from cultivated soils in Nigeria,” Agric. Ecosyst. Environ. 53 (1), 47–61 (1995).

    Article  Google Scholar 

  7. A. R. Dassanayake, A. Senarath, L. S. K. Hettiarachchi, and R. B. Mapa, “Major soils of the Wet Zone and their classification,” in The Soils of Sri Lanka, World Soils Book Series. Ed. by R. B. Mapa (Springer, Cham, 2020), pp. 83–94.

    Google Scholar 

  8. A. R. Dassanayake, R. B. De Silva, and R. B. Mapa, “Major soils of the Dry Zone and their classification,” in The Soils of Sri Lanka, World Soils Book Series, Ed. by R. B. Mapa (Springer, Cham, 2020), pp. 49–67.

    Google Scholar 

  9. DOA, Rice Cultivation Colombo, Sri Lanka (Rice Research and Development Institute, Department of Agriculture, Sri Lanka, 2020).

    Google Scholar 

  10. A. Dobermann and T. H. Fairhurst, Rice: Nutrient Disorders and Nutrient Management, 1st Ed. (Potash and Phosphate Institute, Potash and Phosphate Institute of Canada and International Rice Research Institute, Singapore, 2000).

  11. B. K. Dube, N. E. E. N. A. Khurana, and C. Chatterjee, “Yield, physiology and productivity of rice under manganese stress,” Indian J. Plant Physiol. 7 (4), 392–395 (2002).

    Google Scholar 

  12. N. K. Fageria, “Adequate and toxic levels of copper and manganese in upland rice, common bean, corn, soybean, and wheat grown on an oxisol,” Commun. Soil Sci. Plant Anal. 32 (9–10), 1659–1676. (2001).

    Article  Google Scholar 

  13. N. K. Fageria, Mineral Nutrition of Rice (CRC press, 2013).

    Book  Google Scholar 

  14. R. J. Gilkes and R. M. McKenzie, “Geochemistry and mineralogy of manganese in soils,” in Manganese in Soils and Plants, Ed. by R. D. Graham (Springer, Dordrecht, 1988), pp. 23–35.

    Google Scholar 

  15. M. C. Hernandez-Soriano, F. Degryse, E. Lombi, and E. Smolders, “Manganese toxicity in barley is controlled by solution manganese and soil manganese speciation,” Soil Sci. Soc. Am. J. 76 (2), 399–407 (2012).

    Article  Google Scholar 

  16. V. J. G. Houba, E. J. M. Temminghoff, G. A. Gaikhorst, and W. Van Vark, “Soil analysis procedures using 0.01 M calcium chloride as extraction reagent,” Commun. Soil Sci. Plant Anal. 31 (9–10), 1299–1396 (2000).

    Article  Google Scholar 

  17. J. M. Humphries, J. C. R. Stangoulis, and R. D. Graham, “Manganese,” in Handbook of Plant Nutrition, Ed. by A. V. Barker and D. J. Pilbeam (Taylor and Francis, USA, 2007), pp. 351–366.

    Google Scholar 

  18. L. Imbulana, “Water allocation between agriculture and hydropower: a case study of Kalthota irrigation scheme, Sri Lanka,” in Integrated Water Resources Management: Global Theory, Emerging Practice, and Local Needs, Ed. by P. P. Mollinga, A. Dixit, and K. Athukorala (Sage Publications, 2006), pp. 219–248.

    Google Scholar 

  19. S. P. Indraratne, “Soil mineralogy,” in The Soils of Sri Lanka, World Soils Book Series, Ed. by R. B. Mapa (Springer, Cham, 2020), pp. 35–47.

    Google Scholar 

  20. H. K. Kadupitiya R. N. Madushan, U. K. Rathnayake, R. Thilakasiri, S. B. Dissanayaka. M. Ariyaratne, and L. Suriyagoda, “Use of smartphones for rapid location tracking in mega scale soil sampling,” Open J. Appl. Sci. 11, 239–253 (2021).

    Google Scholar 

  21. H. Li, F. Santos, K. Butler, and E. Herndon, “A critical review on the multiple roles of manganese in stabilizing and destabilizing soil organic matter,” Environ. Sci. Technol. 55 (18), 12136–12152 (2021).

    Article  Google Scholar 

  22. W. L. Lindsay and W. Norvell, “Development of a DTPA soil test for zinc, iron, manganese, and copper,” Soil Sci. Soc. Am. J. 42 (3), 421–428 (1978).

    Article  Google Scholar 

  23. S. H. Lu, Y. X. Xu, and S. N. Hu, “Features of manganese of paddy soil conditions of manganese deficiency on wheat,” Southwest China J. Agric. Sci. 3, 87–91 (1990).

    Google Scholar 

  24. S. C. Maguffin, L Abu-Ali, R. V. Tappero, J. Pena, J. S. Rohila, A. M. McClung, and M. C. Reid, “Influence of manganese abundances on iron and arsenic solubility in rice paddy soils,” Geochim. Cosmochim. Acta 276, 50–69 (2020).

    Article  Google Scholar 

  25. K. Mahatantila, R. Chandrajith, H. A. H. Jayasena, and K. B. Ranawana, “Spatial and temporal changes of hydrogeochemistry in ancient tank cascade systems in Sri Lanka: evidence for a constructed wetland,” Water Environ. J. 22 (1), 17–24 (2008).

    Article  Google Scholar 

  26. R. M. Mc Kenzie, “Manganese oxides and hydroxides,” in Minerals in Soil Environments, Soil Science Society of America Book Series, Ed. by J. B. Dixon and S. B. Weed, 2nd Ed. (Soil Science Society of America, Madison, 1989), pp. 439–465.

    Google Scholar 

  27. N. Miyata, Y. Tani, M. Sakata, and K. Iwahori, “Microbial manganese oxide formation and interaction with toxic metal ions,” J. Biosci. Bioeng. 104 (1), 1–8 (2007).

    Article  Google Scholar 

  28. J. J. Mortvedt, “Needs for controlled-availability micronutrient fertilizers,” Fert. Res. 38, 213–221 (1994).

    Article  Google Scholar 

  29. F. Nadeem and M. Farooq, “Application of micronutrients in rice-wheat cropping system of South Asia,” Rice Sci. 26 (6), 356–371 (2019).

    Article  Google Scholar 

  30. E. R. Page, “Studies in soil and plant manganese,” Plant Soil 16 (2), 247–257 (1962).

    Article  Google Scholar 

  31. C. R. Panabokke, “Rice soils of Sri Lanka,” in Soils and Rice (International Rice Research Institute, Los Banos, 1978), pp. 19–33.

    Google Scholar 

  32. F. N. Ponnamperuma, “Some aspects of the physical chemistry of paddy soils,” in Proceedings of Symposium on Paddy Soils (Springer Berlin Heidelberg, 1981), pp. 59–94.

  33. J. E. Post, “Manganese oxide minerals: crystal structures and economic and environmental significance,” Proc. Natl. Acad. Sci. U. S. A. 96 (7), 3447–3454 (1999).

    Article  Google Scholar 

  34. R. M. B. Rajakaruna, “New approach for the success of Yala cultivation in Dry zone under drought condition,” Engineer 47 (4), (2014).

  35. Z. Rengel, “Uptake and transport of manganese in plants,” in Metal Ions in Biological Systems, Ed. by A. Sigel, H. Sigel, 1st Ed. (Marcel Dekker, New York, 2000), vol. 37, pp. 57–87.

    Google Scholar 

  36. J. T. Sims and G. V. Johnson, “Micronutrient soil tests,” in Micronutrients in Agriculture, Ed. by J. J. Mortvedt, 2nd Ed. (SSSA, Madison, 1991), vol. 4, pp. 427–476.

    Google Scholar 

  37. G. H. Snyder, D. B. Jones, and F. J Coale, “Occurrence and correction of manganese deficiency in Histosol-grown rice,” Soil Sci. Soc. Am. J. 54 (6), 1634–1638 (1990).

    Article  Google Scholar 

  38. A. Tanaka and S. A. Navasero, “Manganese content of the rice plant under water culture conditions,” Soil Sci. Plant Nutr. 12 (2), 21–26 (1966).

    Article  Google Scholar 

  39. P. J. Van Erp, V. J. G. Houba, J. A. Reijneveld, and M. L. Van Beusichem, “Relationship between magnesium extracted by 0.01 M calcium chloride extraction procedure and conventional procedures,” Commun. Soil Sci. Plant Anal. 32 (1–2), 1–18 (2001).

    Article  Google Scholar 

  40. Y. N. Vodyanitskii, “Mineralogy and geochemistry of manganese: a review of publications,” Eurasian Soil Sci. 42 (10), 1170–1178 (2009).

    Article  Google Scholar 

  41. J. Zbíral and P. Němec, “Comparison of Mehlich 2, Mehlich 3, CAL, Schachtschabel, 0.01 M CaCl2 and Aqua Regia extractants for determination of potassium in soils,” Commun. Soil Sci. Plant Anal. 36 (4–6), 795–803 (2005).

    Article  Google Scholar 

  42. Y. Zhuang, J. Zhu, L. Shi, Q. Fu, H. Hu, and Q. Huang, “Influence mechanisms of iron, aluminium and manganese oxides on the mineralization of organic matter in paddy soil,” J. Environ. Manage. 301, 113916 (2022).

    Article  Google Scholar 

  43. USS WRB. 2014 Working Group, World Reference Base on Soil Resources 2015. International Soil Classification System for the Designation of Soils and the Creation of Symbols for Soil Maps. Reports on World Soil Resources No. 106 (FAO, Rome). https://www.fao.org/3/i3794en/I3794en.pdf.

Download references

ACKNOWLEDGMENTS

Authors thank the technical assistance given by Mr Dhanushka Gamage for laboratory analysis of soil samples.

Funding

Financial assistance from the World Bank through the AHEAD/RA3/DOR/STEM/No16 grant is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. D. B. Suriyagoda.

Ethics declarations

No potential conflict of interest was reported by the authors.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajapaksha, I., Madushan, N.D., Sirisena, D.N. et al. Exchangeable Manganese in Diverse Rice-Cultivated Top Soils (0–15 cm) of Sri Lanka. Eurasian Soil Sc. 56 (Suppl 2), S366–S375 (2023). https://doi.org/10.1134/S1064229323601051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229323601051

Keywords:

Navigation