Skip to main content
Log in

Modeling the Impact of Field Irrigation Management on Soil Water-Nitrate Dynamics: Experimental Measurements and Model Simulations

  • SOIL RECLAMATION
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Irrigation systems and watering rates in Iraq often exceed crop water requirements, which yield high soil nitrate (NO3) leaching out of the effective depth of crop roots. This work was conducted to discover the impact of different irrigation management conditions on the soil water-nitrate dynamics to develop management practices for minimizing soil NO3 leaching out of the effective crop roots. The Root Zone Water Quality Model (RZWQM2), which integrates water-nitrate dynamics and related processes, can assist in improving the acknowledgment of soil water-nitrate dynamics. A field experiment was conducted at A-l‑Raeeid Research Station, Baghdad, Iraq; with a wheat crop irrigated by sprinkler and surface irrigation systems at different watering rates of 30, 50, and 70% of the available soil water. RZWQM2 was used to explore the interactions between irrigation practices and soil nitrate dynamics. The model satisfactorily worked for the study field conditions after the calibration process and simulated the impact of irrigation management on the soil water-nitrate dynamics. The results indicate that the high watering rate of irrigation led to a higher amount of soil water content and soil nitrate in the surface soil depths for both irrigation systems. Sprinkler irrigation yielded 0 mg/cm2/day nitrate flux toward the groundwater for all watering rates, whereas surface irrigation produced 314, 94, and 183 mg/cm2/day for the watering rate of 30, 50, and 70%, respectively. Hence, the best irrigation management strategy for the local area of high temperatures is increasing the number of irrigation events with low application rates to achieve an appropriate balance of high crop yield and low nitrate leaching toward the groundwater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. L. Ahuja, K. Rojas, J. Hanson, M. Shaffer, and L. Ma, Root Zone Water Quality Model: Modeling Management Effects on Water Quality and Crop Production (Water Resources Publ., LLC, Highland Ranch, CO., 2000), p. 372.

    Google Scholar 

  2. S. S. Anapalli, L. R. Ahuja, P. H. Gowda, L. Ma, G. Marek, S. R. Evett, and T. A. Howell, “Simulation of crop evapotranspiration and crop coefficients with data in weighing lysimeters,” Agric. Water Manage. 177, 274–283 (2016).

    Article  Google Scholar 

  3. R. Brooks and T. Corey, Hydraulic Properties of Porous Media. Hydrology Papers (Colorado State Univ., 1964).

    Google Scholar 

  4. M. Cameira, R. Fernando, L. Ahuja, and L. Ma, “Using RZWQM to simulate the fate of nitrogen in field soil–Crop environment in the Mediterranean Region,” Agric. Water Manage. 90, 121–136 (2007).

    Article  Google Scholar 

  5. J. Defterdarović, L. Filipović, F. Kranjčec, G. Ondrašek, D. Kikić, A. Novosel, I. Mustać, V. Krevh, I. Magdić, V. Rubinić, and I. Bogunović, “Determination of soil hydraulic parameters and evaluation of water dynamics and nitrate leaching in the unsaturated layered zone: a modeling case study in Central Croatia,” Sustainability 13 (12), 6688 (2021).

    Article  Google Scholar 

  6. S. Falivene, I. Goodwin, D. Williams, and A. Boland, “Introduction to open hydroponics,” in NPSI Fact Sheet National Program for Sustainable Irrigation (2005).

  7. Y. Fan, X. Hao, R. Ding, and S. Kang “Soil water and nitrogen dynamics from interaction of irrigation and fertilization management practices in a greenhouse vegetable rotation,” Soil Sci. Soc. Am. J. 84 (3), 901–913 (2020).

    Article  Google Scholar 

  8. Q. Fang, L. Ma, Q. Yu, R. Malone, S. Saseendran, and L. Ahuja, “Modeling nitrogen and water management effects in a wheat-maize double-cropping system,” J. Environ. Qual. 37, 2232–2242 (2008).

    Article  Google Scholar 

  9. FAO, The State of the World’s Land and Water Resources for Food and Agriculture: Managing Systems at Risk (FAO, Rome, 2018).

    Google Scholar 

  10. H. Farahani and L. Ahuja “Evapotranspiration modeling of partial canopy/residue covered fields,” Trans. ASAE 39, 2051–2064 (1996).

    Article  Google Scholar 

  11. K. Han, Y. Yang, C. Zhou, Y. Shangguan, L. Zhang, N. Li, and L. Wang, “Management of furrow irrigation and nitrogen application on summer maize,” Agron. J. 106 (4), 1402–1410. (2014).

    Article  Google Scholar 

  12. S. Hong, F. Jiao, N. Kuang, C. Liu, Y. Ma, and Q. Li “Simulating the effects of irrigation and tillage on soil water, evapotranspiration, and yield of winter wheat with RZWQM2,” Soil Tillage Res. 214, 105170 (2021).

    Article  Google Scholar 

  13. C. Hu, S. Saseendran, T. Green, L. Ma, X. Li, and L. Ahuja, “Evaluating nitrogen and water management in a double-cropping system using RZWQN,” Vadose Zone J. 5, 493–505 (2006).

    Article  Google Scholar 

  14. X. Jia, L. Shao, P. Liu, B. Zhao, L. Gu, S. Dong, S. Bing, J. Zhang, and B. Zhao “Effect of different nitrogen and irrigation treatments on yield and nitrate leaching of summer maize (Zea mays L.) under lysimeter conditions,” Agric. Water Manage. 137, 92–103 (2014).

    Article  Google Scholar 

  15. J. Jones, J. Antle, B. Basso, K. Boote, R. Conant, I. Foster, H. Godfray, M. Herrero, R. Howitt, S. Janssen, B. Keating, R. Munoz-Carpena, C. Porter, C. Rosenzweig, and T. Wheeler, “Toward a new generation of agricultural system data, models, and knowledge products: state of agricultural systems science,” Agric. Syst. 155, 269–288 (2017).

    Article  Google Scholar 

  16. W. Jury, W. Gardner and W. Gardner, Soil Physics (John Willey & Sons Inc., New York, 1991).

    Google Scholar 

  17. F. Karandish and J. Šimůnek, “Two-dimensional modeling of nitrogen and water dynamics for various N-managed water-saving irrigation strategies using HYDRUS,” Agric. Water Manage. 193, 174–190 (2017).

    Article  Google Scholar 

  18. N. Kuang, Y. Ma, S. Hong, F. Jiao, C. Liu, Q. Li, and H. Han “Simulation of soil moisture dynamics, evapotranspiration, and water drainage of summer maize in response to different depths of subsoiling with RZWQM2” Agric. Water Manage. 249, 106794 (2021).

    Article  Google Scholar 

  19. F. M. Landa, N. R. Fausey, S. E. Nokes, and J. D. Hanson, “Plant production model evaluation for the root zone water quality model (RZWQM 3.2) in Ohio,” Agron. J. 91, 220–227 (1999).

    Article  Google Scholar 

  20. H. Liang, Z. Qi, K. Hu, B. Li, and S. Prasher, “Modelling subsurface drainage and nitrogen losses from artificially drained cropland using coupled DRAINMOD and WHCNS models,” Agric. Water Manage. 195, 201–210 (2018).

    Article  Google Scholar 

  21. J. Lu and H. Lu, “Enhanced Cd transport in the soil-plant-atmosphere continuum (SPAC) system by tobacco (Nicotiana tabacum L.),” Chemosphere 225, 395–405 (2019).

    Article  Google Scholar 

  22. J. Lu, Z. Bai, G. L. Velthof, Z. Wu, D. Chadwick, and L. Ma, “Accumulation and leaching of nitrate in soils in wheat-maize production in China,” Agric. Water Manage. 212, 407–415 (2019).

    Article  Google Scholar 

  23. L. Ma, L. Ahuja, and R. Malone, “Systems modeling for soil and water research and management: current status and needs for the 21st century,” Trans. ASABE 50, 1705–1713 (2007).

    Article  Google Scholar 

  24. L. Ma, L. Ahuja, B. Nolan, R. Malone, T. Trout, and Z. Qi, “Root zone water quality model (RZWQM2): model use, calibration, and validation,” Trans. ASABE 55, 1425–1446 (2012).

    Article  Google Scholar 

  25. L. Ma, L. Ahuja, S. Saseendran, R. Malone, T. Green, B. Nolan, P. Bartling, G. Flerchinger, K. Boote, and G. Hoogenboom “A protocol for parameterization and calibration of RZWQM2 in field research,” in Methods of Introducing System Models into Agricultural Research, Ed. by L. Ahuja and L. Ma (SSSA Book Series, Madison, 2011), pp. 1–64.

    Google Scholar 

  26. L. Ma, G. Hoogenboom, S. Saseendran, P. Bartling, L. Ahuja, and T. Green, “Effects of estimating soil hydraulic properties and root growth factor on soil water balance and crop production,” Agron. J. 101, 572–583 (2009).

    Article  Google Scholar 

  27. L. Ma, D. Nielsen, L. Ahuja, R. Malone, S. Saseendran, K. Rojas, J. Hanson, and J. Benjamin, “Evaluation of RZWQM under various irrigation levels in Eastern Colorado,” Trans. ASAE 46 (1), 39–49 (2003).

    Google Scholar 

  28. T. Masood and S. S. Shahadha, “Simulating the effect of climate change on winter wheat production and water/nitrogen use efficiency in Iraq: case study,” Iraqi J. Agric. Sci. 52 (4), 999–1007 (2021).

    Article  Google Scholar 

  29. L. Negm, M. Youssef, and D. Jaynes, “Evaluation of DRAINMOD-DSSAT simulated effects of controlled drainage on crop yield, water balance, and water quality for a corn soybean cropping system in central Iowa,” Agric. Water Manage. 187, 57–68 (2017).

    Article  Google Scholar 

  30. M. Nimah and R. Hanks “Model for estimating soil water, plant, and atmospheric interrelations: I. Description and sensitivity,” Soil Sci. Soc. Am. J. 37, 522–527 (1973).

    Article  Google Scholar 

  31. V. Phogat, M. Skewes, J. Cox, G. Sanderson, J. Alam, and J. Šimůnek, “Seasonal simulation of water, salinity and nitrate dynamics under drip irrigated mandarin (Citrus reticulata) and assessing management options for drainage and nitrate leaching,” J. Hydrol. 513, 504–516 (2014).

    Article  Google Scholar 

  32. D. Qi and T. Hu, “Effects of varied nitrogen supply and irrigation methods on distribution and dynamics of soil NO3-N during maize season,” J. Agric. Sci. 9 (1), (2017).

  33. S. Ratchawang and S. Chotpantarat, “The leaching potential of pesticides in Song Phi Nong District, Suphan Buri Province, Thailand,” EnvironmentAsia 12 (3), (2019).

  34. S. Saseendran, L. Ahuja, L. Ma, D. Nielsen, T. Trout, A. Andales, J. Chávez, and J. Ham, “Enhancing the water stress factors for simulation of corn in RZWQM2,” Agron. J. 106, 81–94 (2014).

    Article  Google Scholar 

  35. S. Shahadha and O. Wendroth, “Can one-time calibration of measured soil hydraulic input parameters yield appropriate simulations of RZWQM2?,” Soil Sci. Soc. Am. J. 86 (6), 1523–1537 (2022).

    Article  Google Scholar 

  36. S. Shahadha, O. Wendroth, and D. Ding, “Nitrogen and rainfall effects on crop growth—experimental results and scenario analyses,” Water 13 (16), 2219 (2021).

    Article  Google Scholar 

  37. S Shahadha, O. Wendroth, J. Zhu, and J. Walton, “Can measured soil hydraulic properties simulate field water dynamics and crop production?,” Agric. Water Manage. 223, 105661 (2019).

    Article  Google Scholar 

  38. D. Shrestha, K. Jacobsen, W. Ren, and O. Wendroth, “Understanding soil nitrogen processes in diversified vegetable systems through agroecosystem modelling,” Nutr. Cycling Agroecosyst. 120 (1), 49–68 (2021).

    Article  Google Scholar 

  39. W. Shuttleworth and J. Wallace, “Evaporation from sparse crops-an energy combination theory,” Q. J. R. Meteorol. Soc. 111, 839–855 (1985).

    Article  Google Scholar 

  40. Z. Si, M. Zain, F. Mehmood, G. Wang, Y. Gao, and A. Duan, “Effects of nitrogen application rate and irrigation regime on growth, yield, and water-nitrogen use efficiency of drip-irrigated winter wheat in the North China Plain,” Agric. Water Manage. 231, 106002 (2020).

    Article  Google Scholar 

  41. J. Šimůnek, “Models of water flow and solute transport in the unsaturated zone,” in Encyclopedia of Hydrological Sciences (2006).

  42. Soil survey staff, Key to Soil Taxonomy, 12th Ed. (NRSC, USDA, 2014).

  43. M. Sophocleous, M. Townsend, F. Vocasek, L. Ma, and A. KC, “Soil nitrogen balance under wastewater management: field measurements and simulation results,” J. Environ. Qual. 38, 1286–1301 (2009).

    Article  Google Scholar 

  44. R. Srivastava, R. Panda, A. Chakraborty, and D. Halder, “Quantitative estimation of water use efficiency and evapotranspiration under varying nitrogen levels and sowing dates for rainfed and irrigated maize,” Theor. Appl. Climatol. 139, 1385–1400 (2020).

    Article  Google Scholar 

  45. M. Stoppiello, G. Lofrano, M. Carotenuto, G. Viccione, C. Guarnaccia, and L. Cascini, “A comparative assessment of analytical fate and transport models of organic contaminants in unsaturated soils,” Sustainability 12 (7), 2949 (2020).

    Article  Google Scholar 

  46. M. Smirnova and D. Kozlov, “Soil properties as indicators of soil water regime: a review,” Eurasian Soil Sci. 56 (3), 306–320 (2023).

    Article  Google Scholar 

  47. A. Smagin and N. Sadovnikova, “Temperature factor of soil water-holding capacity,” Eurasian Soil Sci. 55 (11), 1556–1567 (2022).

    Article  Google Scholar 

  48. V. Shchedrin, A. Kozhanov, V. Korzhov, and I. Korzhov, “Features of modeling the distribution of water resources on systems of dual regulation of the water regime of soils,” Melior. Water Manage., No. 1, 38 (2022).

  49. A. Teuling, R. Uijlenhoet, F. Hupet, and P. Troch, “Impact of plant water uptake strategy on soil moisture and evapotranspiration dynamics during drydown,” Geophys. Res. Lett. 33 (3), (2006).

  50. Q. Yu, S. Saseendran, L. Ma, G. Flerchinger, T. Greenand, and L. Ahuja, “Modeling a wheat–maize double cropping system in China using two plant growth modules in RZWQM,” Agric. Syst. 89 (2–3), 457–477 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saadi Sattar Shahadha.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahadha, S.S., Zeki, S.L., Dawood, I.A. et al. Modeling the Impact of Field Irrigation Management on Soil Water-Nitrate Dynamics: Experimental Measurements and Model Simulations. Eurasian Soil Sc. 56 (Suppl 2), S354–S365 (2023). https://doi.org/10.1134/S1064229323600768

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229323600768

Keywords:

Navigation