Skip to main content
Log in

Litters and Living Ground Cover as Informational Characteristics of Biogeocenoses for the Small-Leaved Forests in Moscow Oblast

  • GENESIS AND GEOGRAPHY OF SOILS
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The ecological and cenotic structure of the living ground cover and the structural and functional features of forest litter are studied for three types of forests: hairy sedge birch stand, hairy sedge birch–aspen stand, tussock grass birch stand, forming a sequence of increasing hydromorphism within the slope of near-watershed depression. An ecological characterization of the living ground cover is based on the ecological and cenotic grouping of species according to A.A. Nitsenko and ecological indicator scores by L.G. Ramensky and H. Ellenberg. An increase in hydromorphism is accompanied by an increase in the ecological and cenotic diversity. The total degree of trophicity also increases under conditions of high hydromorphism (in the tussock grass birch forest stand) in combination with a low Ellenberg score for acidity. On the contrary, the maximum scores for these indicators on the background of a high variation are observable in the birch–aspen forest, which occupies intermediate positions in the series of increasing hydromorphism. Characteristic of the studied forest stands are destructive and fermentative litters. With an increase in hydromorphism, the litter stock increases as well (from 400 to 1400 g/m2) with a concurrent increase in the share of detritus in the L subhorizon. About 60% of the total organic matter stock in the litter of small-leaved tree stands is represented by readily decomposable fractions. With regularly increasing ash content in the L–F subhorizons, the maximum ash content is characteristic of the detritus fraction in L subhorizon. The parameters of the ecological characterization used in principal component analysis show a good grouping of the studied phytocenoses according to the degree of moistening, especially when using the main properties of litter (stock, thickness, and the share of detritus). It is reasonable to use the properties of litter when looking for similarity and differences of the studied phytocenoses as characteristics that integrate the specific features of moisture regime. The parameters of the living ground cover together with a number of specific structural and functional features of forest litter are adequate indicators of the degree of hydromorphism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. N. A. Avetov, O. L. Kuznetsov, and E. A. Shishkonakova, “Soils of oligomesotrophic and mesotrophic bogs in the boreal zone of West Siberia: possibilities of botanical diagnostics within the framework of the type of mesotrophic peat soils,” Eurasian Soil Sci. 54 (5), 689–701 (2021).

    Article  Google Scholar 

  2. N. A. Avetov and E. A. Shishkonakova, “Some aspects of the systematics and diagnostics of peat soils of boreal mires,” Eurasian Soil Sci. 52 (8), 871–879 (2019).

    Article  Google Scholar 

  3. L. G. Bogatyrev, “On the classification of forest litters,” Pochvovedenie, No. 3, 118–127 (1990).

    Google Scholar 

  4. L. G. Bogatyrev, A. I. Benediktova, V. M. Telesnina, M. M. Karpukhin, N. I. Zhilin, Ph. I. Zemskov, and V. V. Demin, “Water extracts as criterion of assessment of geochemical conditions on a monolithic soil–geochemical catena in the upper reaches of the Klyaz’ma River,” Moscow Univ. Soil Sci. Bull. 75 (4–5), 159–167 (2020).

  5. E. F. Vedrova and T. V. Reshetnikova, “The mass of the litter and the intensity of its decomposition in 40-year-old stands of the main forest-forming species of Siberia,” Lesovedenie, No. 1, 42–50 (2014).

    Google Scholar 

  6. Yu. P. Demakov, A. V. Isaev, and R. N. Sharafutdinov, “The role of the forest litter in the forests of the Mari Trans-Volga region and the variability of its parameters,” in Proceedings of the Bolshaya Kokshaga State Nature Reserve, No. 8, 15–43 (2018).

  7. T. T. Efremova, A. F. Avrova, S. P. Efremov, and N. V. Melent’eva, “Stages of litter transformation in bog birch forests,” Eurasian Soil Sci. 42 (10), 1120–1129 (2009).

    Article  Google Scholar 

  8. T. T. Efremova, S. P. Efremov, and A. F. Avrova, “Ash composition of litter fractions as an indicator of the stages of litter transformation (by an example of swampy birch forests),” Eurasian Soil Sci. 55 (11), 1533–1545 (2022). https://doi.org/10.1134/S1064229322110035

    Article  Google Scholar 

  9. T. T. Efremova, O. P. Sekretenko, A. F. Avrova, and S. P. Efremov, “Spatial structure of acid properties of litter in the succession row of swamp birch woods,” Biol. Bull. (Moscow) 41 (3), 284–295 (2014).

    Article  Google Scholar 

  10. A. Yu. Karpechko, A. V. Tuyunen, M. V. Medvedeva, and E. V. Moshkina, I. A. Dubrovina, N. V. Genikova, V. A. Sidorova, A. V. Mamai, O. V. Tolstoguzov, and L. M. Kulakova, “The mass of thin roots in the soils of forest communities on post-agrogenic lands in the conditions of the middle taiga (on the example of the Republic of Karelia),” Rastit. Resur. 57 (2), 145–157 (2021).

    Google Scholar 

  11. Classification and Diagnostic System of Russian Soils (Oikumena, Smolensk, 2004) [in Russian].

  12. E. A. Kleshcheva, “The use of ecological scales for indication of the current state of forest communities,” Russ. J. Ecol. 38 (2), 94–100 (2007).

    Article  Google Scholar 

  13. G. N. Koptsik, T. V. Bagdasarova, and O. V. Gorlenko, “Relationships between plant species diversity and soil properties in ecosystems of the southern taiga,” Byull. Mosk. O-va. Ispyt. Prir., Otd. Biol. 106 (2), 31–38 (2001).

    Google Scholar 

  14. E. O. Korol’kova, “Monitoring the recreational use of specially protected natural areas on the example of the Polistovsky State Nature Reserve,” Sots.-Ekol. Tekhnol., Nos. 1–2, 30–39 (2015).

    Google Scholar 

  15. M. A. Kuznetsov, “Influence of decomposition conditions and litter composition on the characteristics and supply of litter in the middle taiga blueberry–sphagnum spruce forest,” Lesovedenie, No. 6, 54–60 (2010).

    Google Scholar 

  16. E. V. Moshkina and A. V. Mamai, “Estimation of fertility and ecological state of automorphic soils in urban and suburban forests,” Vestn. Sovrem. Nauki, No. 10, 31–37 (2016).

    Google Scholar 

  17. V. M. Nazaryuk and F. R. Kalimullina, “The role of natural ecosystems in restoring the fertility of plowed soils in Western Siberia,” Probl. Agrokhim. Ekol., No. 1, 43–50 (2017).

  18. A. A. Nitsenko, “On the study of the ecological structure of vegetation cover,” Bot. Zh. 54 (7), 1002–1014 (1969).

    Google Scholar 

  19. I. V. Priputina, G. G. Frolova, V. N. Shanin, T. N. Myakshina, and P. Ya. Grabarnik, “Spatial distribution of organic matter and nitrogen in the Entic Podzols of the Prioksko-Terrasnyi Reserve and its relationship with the structure of forest phytocenoses,” Eurasian Soil Sci. 53 (8), 1021–1032 (2020).

    Article  Google Scholar 

  20. T. A. Pristova, “Biological circulation of substances in the secondary deciduous-coniferous plantation of the middle taiga,” Vestn. Inst. Biol. Komi Nauchn. Tsentra Ural. Otd. Ross. Akad. Nauk, No. 8 (106), 7–12 (2006).

    Google Scholar 

  21. T. A. Pristova, “Components of the carbon cycle in the deciduous-coniferous plantation of the middle taiga,” Lesovedenie, No. 6, 12–19 (2010).

    Google Scholar 

  22. L. G. Ramenskii, I. A. Tsatsenkin, O. N. Chizhikov, and N. A. Antipov, Ecological Assessment of Fodder Lands by Vegetation Cover (Sel’khozgiz, Moscow, 1956) [in Russian].

    Google Scholar 

  23. O. A. Revina and A. G. Revin, “Biogeochemical peculiarities of elementary landscapes of the natural monument of regional significance “Krasny Bor”," Prir. O-vo: Poiskakh Garmonii, No. 5, 217–227 (2019).

    Google Scholar 

  24. O. V. Semenyuk, V. M. Telesnina, L. G. Bogatyrev, A. I. Benediktova, and Ya. D. Kuznetsova, “Assessment of Intra-Biogeocenotic Variability of Forest Litters and Dwarf Shrub–Herbaceous Vegetation in Spruce Stands,” Eurasian Soil Sci. 53 (1), 27–38 (2020).

    Article  Google Scholar 

  25. G. V. Stoma, L. G. Bogatyrev, M. I. Makarov, and D. V. Manakhov, Summer Practice in Soil Science: Educational and Methodological Manual for 1st Year Students of the Faculty of Soil Science of Moscow State University (MAKS-Press, Moscow, 2017) [in Russian].

    Google Scholar 

  26. P. A. Tarasov, A. V. Tarasova, and V. A. Ivanov, “The main characteristics of the forest litter of derived small-leaved plantations,” Vestn. Krasnoyarsk. Gos. Univ., No. 2, 197–200 (2015).

  27. V. M. Telesnina, L. G. Bogatyrev, A. I. Benediktova, Ph. I. Zemskov, and M. N. Maslov, “The dynamics of plant debris input and of some properties of forest litters during postagrogenic reforestation under the conditions of southern taiga,” Moscow Univ. Soil Sci. Bull. 74 (4), 139–145 (2019).

    Article  Google Scholar 

  28. V. M. Telesnina, O. V. Semenyuk, and L. G. Bogatyrev, “Features of forest litters in conjunction with ground cover in the forest ecosystems of Moscow oblast (based on the example of the Chashnikovo Educational-Experimental Soil-Ecological Center),” Moscow Univ. Soil Sci. Bull. 72 (4), 151–160 (2017).

    Article  Google Scholar 

  29. O. V. Trefilova and D. Yu. Efimov, “Changes in the vegetation cover and soils under natural overgrowth of felled areas in fir forests of the Yenisei Ridge,” Eurasian Soil Sci. 48 (8), 792–801 (2015).

    Article  Google Scholar 

  30. D. S. Coxson and D. Parkinson, “Winter respiratory activity in aspen woodland forest floor litter and soils,” Soil Biol. Biochem. 19, 49–59 (1987).

    Article  Google Scholar 

  31. H. Ellenberg, Zeigerwerte der Gefasspflanzen Mitteleuropas (Goltze, Gottingen, 1974).

    Google Scholar 

  32. E. Landolt, B. Bäumler, and A. Erhardt, Flora Indicative. Ökolo-Gische Zeigerwerte und Biologische Kennze-Ichenzur Flora der Schweiz und der Alpen (Haupt-Verlag, 2010).

    Google Scholar 

  33. K. Lõhmus, K. Rosenvald, and A. Sõber, “Elevated atmospheric humidity shapes the carbon cycle of a silver birch forest ecosystem: a FAHM study,” Sci. Total Environ. 661, 441–448 (2019). https://doi.org/10.1016/j.scitotenv.2019.01.160

    Article  Google Scholar 

  34. M. Middleton, P. Närhi, H. Arkimaa, E. Hyvönen, V. Kuosmanen, P. Treitz, and R. Sutinen, “Ordination and hyperspecrtal remote sensing approach to classify peatland biotopes along soil moisture and fertility gradients,” Remote Sens. Environ. 124, 596–609 (2012).

    Article  Google Scholar 

  35. S. Nikula, E. Vapaavuori, and S. Manninen, “Urbanization-related changes in European aspen (Populus tremula L.): Leaf traits and litter decomposition,” Environ. Pollut. 158 (6), 2132–2142 (2010). https://doi.org/10.1016/j.envpol.2010.02.025

    Article  Google Scholar 

  36. P. C. Rogers, B. D. Pinno, and D. Kulakowski, “A global view of aspen: conservation science for widespread keystone systems,” // Global Ecol. Conserv. 21, (2020). https://doi.org/10.1016/j.gecco.2019.e00828

  37. K. Rosenvald, K. Lõhmus, and A. Tullus, “The initial overreaction of carbon cycle to elevated atmospheric humidity levels off over time—a FAHM study in a young birch forest,” Sci. Total Environ. 796, (2021). https://doi.org/10.1016/j.scitotenv.2021.148917

  38. O. P. Sekretenko, T. T. Efremova, and S. P. Efremov, “Factors influencing the spatial pattern of the ash content of bog birch forest litter,” Procedia Environ. Sci. 3, 99–104 (2011). https://doi.org/10.1016/j.proenv.2011.02.018

    Article  Google Scholar 

  39. V. Uri, M. Kukumägi, and K. Karoles, “Litterfall dynamics in Scots pine (Pinus sylvestris), Norway spruce (Picea abies) and birch (Betula) stands in Estonia,” For. Ecol. Manage. 520, 120417–120424 (2022). https://doi.org/10.1016/j.foreco.2022.120417

    Article  Google Scholar 

  40. Q. Wang, J.-H. Kwak, and S. X. Chang, “Long-term N and S addition and changed litter chemistry do not affect trembling aspen leaf litter decomposition, elemental composition and enzyme activity in a boreal fores,” Environ. Pollut. 250, 143–154 (2019). https://doi.org/10.1016/j.envpol.2019.04.007

    Article  Google Scholar 

Download references

Funding

The work was supported by the state budget (project no. 121040800321-4 “Indicators of the Transformation of Biogeochemical Cycles of Biogenic Elements in Natural and Anthropogenic Ecosystems”) and the Program of the Interdisciplinary Scientific and Educational School with the Lomonosov Moscow State University “Future of the Planet and Global Changes in Environment”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Telesnina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by G. Chirikova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Telesnina, V.M., Semenyuk, O.V. & Bogatyrev, L.G. Litters and Living Ground Cover as Informational Characteristics of Biogeocenoses for the Small-Leaved Forests in Moscow Oblast. Eurasian Soil Sc. 56, 841–853 (2023). https://doi.org/10.1134/S1064229323600513

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229323600513

Keywords:

Navigation