Skip to main content
Log in

Quantitative Characteristics of the Microstructure of Typical Chernozems under Different Agricultural Technologies

  • MINERALOGY AND MICROMORPHOLOGY OF SOILS
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The methodological possibilities of micromorphological soil research to analyze digital images of soil thin sections at a quantitative level are presented in this study. A new software Thixomet Pro has been tested for quantitative micromorphological study of soil thin sections from the surface horizons of a Haplic Chernozem. Soil samples for preparing thin sections were collected on the territory of a field experiment for assessing the impact of agricultural technologies in grain crop rotation on soil properties in Kursk oblast, Russia. In the field experiment, conventional tillage and no-till (direct seeding) technologies were compared. Soil sampling was carried out in two replicates from a depth of 10–15 cm. The analysis of thin sections revealed the variability of microstructure of Haplic Chernozem in the size, shape, and orientation of aggregates associated with used agricultural technologies in grain crop rotation. Soil aggregates under no-till are generally larger compared to the aggregates under conventional tillage. This is noted for all levels of aggregate diameters: minimum, medium, and maximum. In trials with direct seeding, agronomically valuable aggregates typical of the structure of virgin soils predominate. The aggregates formed in the no-till soil are less rounded and isometric than those in the soil under conventional tillage, and the proportion of subhorizontal aggregates is higher (54.3 and 34.1%, respectively), which favors water retention in the surface horizon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. V. P. Belobrov, S. A. Yudin, A. Ya. Aidiev, N. R. Ermolaev, M. P. Lebedeva, K. N. Abrosimov, T. I. Borisochkina, A. Ya. Voronin, and O. O. Plotnikova, Typical Chernozem. Direct Sowing, Kursk Oblast. Experiment, Rotation 1.1 (GEOS, Moscow, 2021) [in Russian]. https://doi.org/10.34756/GEOS.2021.16.37873

  2. A. F. Vadyunina and Z. A. Korchagina, Methods for Studying the Physical Properties of Soils (Agropromizdat, Moscow, 1986) [in Russian].

    Google Scholar 

  3. Global Climate and Soil Cover in Russia: Desertification and Land Degradation, Institutional, Infrastructural, Technological Adaptation Measures (Agriculture and Forestry), Ed. by R. S.-Kh. Edel’geriev (Izd. MBA, Moscow, 2019), Vol. 2 [in Russian].

    Google Scholar 

  4. S. N. Gorbov, O. S. Bezuglova, K. N. Abrosimov, E. B. Skvortsova, S. S. Tagiverdiev, & I. V. Morozov, “Physical properties of soils in Rostov agglomeration,” Eurasian Soil Sci. 49 (8), 898–907 (2016). https://doi.org/10.1134/S106422931606003X

    Article  Google Scholar 

  5. V. K. Dridiger, R. S. Stukalov, and A. G. Matveev, “Influence of soil type and bulk density on the yield of winter wheat cultivated using the no-till technology in the zone of unstable moistening in the Stavropol region,” Zemledelie, No. 2, 19–22 (2017).

    Google Scholar 

  6. V. K. Dridiger, A. F. Nevecherya, I. D. Tokarev, and S. S. Vaitsekhovskaya, “Economic efficiency of the no-till technology in the arid zone of the Stavropol region,” Zemledelie, No. 3, 16–19 (2017).

    Google Scholar 

  7. V. K. Dridiger, Recommendations on Conducting Scientific Research on Minimizing Tillage and Direct Sowing (Sev.-Kavk. Fed. Nauchn. Agrar. Tsentr, Stavropol, 2020) [in Russian].

    Google Scholar 

  8. V. K. Dridiger, V. P. Belobrov, S. A. Antonov, S. A. Yudin, R. G. Gadzhiumarov, S. A. Likhodievskaya, and N. R. Ermolaev, “Soil protection from water erosion and deflation in no-till technology,” Zemledelie, No. 6, 11–17 (2020).

    Google Scholar 

  9. V. K. Dridiger, A. L. Ivanov, V. P. Belobrov, and O. V. Kutovaya, “Rehabilitation of soil properties by using direct seeding technology,” Eurasian Soil Sci. 53 (9), 1293–1301 (2020). https://doi.org/10.1134/S1064229320090033

    Article  Google Scholar 

  10. D. V. Dubovik, V. I. Lazarev, A. Ya. Aidiev, and B. S. Il’in, “The efficiency of various methods of tillage and direct sowing in the cultivation of winter wheat on chernozems,” Dostizh. Nauki Tekh. APK 33 (12), 26–29 (2019). https://doi.org/10.24411/0235-2451-2019-11206

    Article  Google Scholar 

  11. E. V. Dubovik, D. V. Dubovik, and A. V. Shumakov, “Influence of tillage practices on the macrostructure of typical chernozem,” Eurasian Soil Sci. 54 (10), 1485–1495 (2021). https://doi.org/10.1134/S1064229321100057

    Article  Google Scholar 

  12. N. R. Ermolaev, V. P. Belobrov, S. A. Yudin, A. I. Aidiev, and B. S. Il’in, “Variability of bulk density in typical chernozems under direct seeding,” S-kh. Zh., No. 1 (14), 14–20 (2021). https://doi.org/10.25930/2687-1254/002.1.14.2021

  13. A. L. Ivanov, I. Yu. Savin, V. S. Stolbovoi, Yu. A. Dukhanin, D. N. Kozlov, and I. M. Bamatov, “Global climate and land cover: implications for Russian land use,” Byull. Pochv. Inst. im. V. V. Dokuchaeva, No. 107, 5–32 (2021). https://doi.org/10.19047/0136-1694-2021-107-5-32

    Article  Google Scholar 

  14. A. L. Ivanov, I. Yu. Savin, V. S. Stolbovoi, Yu. A. Dukhanin, and D. N. Kozlov, “Methodological approaches to the formation of a unified national system for monitoring and accounting for the balance of carbon and greenhouse gas emissions on the lands of the agricultural fund of the Russian Federation,” Byull. Pochv. Inst. im. V. V. Dokuchaeva, No. 108, 175–218 (2021). https://doi.org/10.19047/0136-1694-2021-108-175-218

    Article  Google Scholar 

  15. V. I. Kiryushin, “The problem of minimizing tillage: development prospects and research objectives,” Zemledelie, No. 7, 3–6 (2013).

    Google Scholar 

  16. V. I. Kiryushin, V. K. Dridiger, A. N. Vlasenko, N. G. Vlasenko, D. N. Kozlov, S. V. Kiryushin, and A. A. Konishchev, Guidelines for Designing Minimum Tillage and Direct Seeding Systems (Izd. MBA, Moscow, 2019) [in Russian].

    Google Scholar 

  17. Classification and Diagnostics of Soils of the USSR (Kolos, Moscow, 1977) [in Russian].

  18. Register of Soil Quality Indicators for Agricultural Land in the Russian Federation. Version 1.0 (PresSTO, Ivanovo, 2021). https://doi.org/10.51961/9785604637401

  19. K. A. Romanenko, K. N. Abrosimov, A. N. Kurchatov, and V. V. Rogov, “Experience in the use of X-ray computed tomography in the study of the microstructure of frozen rocks and soils,” Kriosfera Zemli 21 (4), 75–81 (2017). https://doi.org/10.21782/KZ1560-7496-2017-4(75-81)

    Article  Google Scholar 

  20. E. B. Skvortsova, Extended Abstract of Doctoral Dissertation in Agriculture (Moscow, 1999).

  21. E. B. Skvortsova and D. R. Morozov, “Micromorphometric classification and diagnostics of the structure of the soil pore space,” Pochvovedenie, No. 6, 49–56 (1993).

    Google Scholar 

  22. D. D. Khaidapova, V. V. Klyueva, E. B. Skvortsova, and K. N. Abrosimov, “Rheological properties and tomographically determined pore space of undisturbed samples of typical chernozems and soddy-podzolic soils,” Eurasian Soil Sci. 51 (10), 1191–1199 (2018). https://doi.org/10.1134/S106422931810006X

    Article  Google Scholar 

  23. V. A. Kholodov, Extended Abstract of Doctoral Dissertation in Agriculture (Moscow, 2020).

  24. V. A. Kholodov and N. V. Yaroslavtseva, Aggregates and Organic Matter of Soils in Recovering Cenoses (GEOS, Moscow, 2021) [in Russian].

    Google Scholar 

  25. V. A. Kholodov, N. V. Yaroslavtseva, V. I. Lazarev, and A. S. Frid, “Interpretation of data on the aggregate composition of typical chernozems under different land use by cluster and principal component analyses,” Eurasian Soil Sci. 49 (9), 1026–1032 (2016).

    Article  Google Scholar 

  26. G. N. Cherkasov, I. G. Pykhtin, A. V. Gostev, L. B. Nitchenko, V. A. Plotnikov, G. P. Il’ina, and L. P. Gaponova, Theoretical Foundations for the Formation of an Agrotechnological Policy for the Use of Zero and Surface Tillage for Grain Crops for the Modernization of Agriculture (Kursk, 2012) [in Russian].

    Google Scholar 

  27. E. V. Shein, Soil Physics (Mosk. Univ., Moscow, 2005) [in Russian].

    Google Scholar 

  28. F. Behrends Kraemer and H. J. M. Morrás, “Macroporosity of a typic Argiudoll with different cropping intensity under no-tillage,” Span. J. Soil Sci. 8, 214–235 (2018). https://doi.org/10.3232/SJSS.2018.V8.N2.06

    Article  Google Scholar 

  29. A. Castellanos-Navarrete, C. Rodriguez-Aragones, R. G. M. De Goede, M. J. Kooistra, K. D. Sayre, L. Brussaard, and M. M. Pulleman, “Earthworm activity and soil structural changes under conservation agriculture in central Mexico,” Soil Tillage Res. 123, 61–70 (2012). https://doi.org/10.1016/j.still.2012.03.011

    Article  Google Scholar 

  30. R. Derpsch, T. Friedrich, A. Kassam, and H. Li, “Current status of adoption of no-till farming in the world and some of its main benefits,” Int. J. Agric. Biol. Eng. 3 (1), 1–26 (2010). https://doi.org/10.3965/j.issn.1934-6344.2010.01.001-025

    Article  Google Scholar 

  31. D. Filipovic, S. Husnjak, S. Kosutic, and Z. Gospodaric, “Effects of tillage systems on compaction and crop yield of Albic Luvisol in Croatia,” J. Terramech. 43, 177–189 (2006). https://doi.org/10.1016/j.jterra.2005.04.002

    Article  Google Scholar 

  32. W. L. Kubiena, Die Mikromorphometrische Bodenanalyse (Enke, Stuttgart, 1967).

    Google Scholar 

  33. S. Mangalassery, S. Sjögersten, D. L. Sparkes, and S. J. Mooney, “Examining the potential for climate change mitigation from zero tillage,” J. Agric. Sci. 153 (7), 1151–1173 (2015). https://doi.org/10.1017/S0021859614001002

    Article  Google Scholar 

  34. G. Stoops, Guidelines for Analysis and Description of Soil and Regolith Thin Sections (Soil Sci. Soc. Am. Wisconsin, 2021).

    Google Scholar 

  35. Z. Su, J. Zhang, W. Wu, D. Cai, J. Lv, G. Jiang, J. Huang, J. Gao, R. Hartmann, and D. Gabriels, “Effects of conservation tillage practices on winter wheat water-use efficiency and crop yield on the Loess Plateau, China,” Agric. Water Manage. 87, 307–314 (2007).

    Article  Google Scholar 

  36. Thixomet Image Analysis Software. https://thixomet.ru/ products/#pro. Cited July 19, 2021.

  37. A. J. Vanden Bygaart, R. Protz, and A. D. Tomlin, “Changes in pore structure in a no-till chronosequence of silt loam soils, southern Ontario,” Can. J. Soil Sci. 79, 149–160 (1999).

    Article  Google Scholar 

  38. B. Van Vliet-Lanoë and C. A. Fox, “Frost action,” in Interpretation of Micromorphological Features of Soils and Regoliths (2018), pp. 575–603. https://doi.org/10.1016/B978-0-444-63522-8.00020-6

  39. N. Verhulst, V. Nelissen, N. Jespers, H. Haven, K. D. Sayre, D. Raes, J. Deckers, and B. Govaerts, “Soil water content, maize yield and its stability as affected by tillage and crop residue management in rainfed semiarid highlands,” Plant Soil 344 (1), 73–85 (2011).

    Article  Google Scholar 

  40. World Reference Base for Soil Resources 2014. Update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. World Soil Resources Reports (FAO, Rome, 2015), No. 106.

  41. S. Zhang, Q. Li, X. Zhang, K. Wei, L. Chen, and W. Liang, “Effects of conservation tillage on soil aggregation and aggregate binding agents in black soil of Northeast China,” Soil Tillage Res. 124, 196–202 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Yudin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Klyueva

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yudin, S.A., Plotnikova, O.O., Belobrov, V.P. et al. Quantitative Characteristics of the Microstructure of Typical Chernozems under Different Agricultural Technologies. Eurasian Soil Sc. 56, 807–817 (2023). https://doi.org/10.1134/S1064229323600343

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229323600343

Keywords:

Navigation