Skip to main content
Log in

Chemical Structure of Organic Matter of Agrochernozems in Different Slope Positions

  • SOIL CHEMISTRY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Chemical structure of organic matter (OM) pools in the arable layers of agrochernozems (non-eroded, eroded, and depositional has been studied by solid-state 13C-NMR spectroscopy. As has been shown, two competing processes simultaneously take place in the erosional zone: decomposition of the OM of the underlying horizon exposed due to erosion, and the stabilization of fresh OM having entered with the crop residues (OM dynamic replacement). Analytical data suggest that the OM dynamic replacement in the erosional zone efficiently compensate for the OM decomposition, as is evidenced by the highest C/N ratio of all studied OM pools in the eroded agrochernozem along with the absence of statistically significant differences in the integral characteristics of their chemical structure. However, a continuous removal of the upper soil layer from the eroded agrochernozem with each erosion event does not fully compensate for the quantitative OM losses there. The most labile OM part can be mineralized during transportation of the eroded material to the depositional zone. Accordingly, the OM entering the depositional zone is to a greater degree transformed as compared with that of the eroded agrochernozem. Nevertheless, characteristic of the depositional agrochernozem is an increased accumulation of organic carbon in the bulk soil and all examined OM pools. Correspondingly, the continuous OM inputs from the slope position subject to erosion with its subsequent burial after each consecutive erosion event, as well as the repacking/aggregation of the newly deposited OM, efficiently contribute to the deposition of organic carbon in the depositional zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Z. S. Artemyeva, Extended Abstract of Doctoral Dissertation in Biology (Moscow, 2008).

  2. Z. S. Artemyeva, Organic Matter and Soil Granulometric System (GEOS, Moscow, 2010) [in Russian].

    Google Scholar 

  3. Z. S. Artemyeva, “Organo-mineral profiles of agrogenic-erosion-degraded typical chernozems of the Western part of the Central Chernozem region,” Agrokhimiya, No. 3, 1–8 (2009).

    Google Scholar 

  4. Z. S. Artemyeva, E. P. Zazovskaya, E. S. Zasukhina, and E. V. Tsomaeva, “Natural 13C abundance in the organic matter of water-stable aggregates of Haplic Chernozem under contrasting land uses,” Eurasian Soil Sci. 56 (3), 294–305 (2023).

    Article  Google Scholar 

  5. N. N. Danchenko, Z. S. Artemyeva, Y. G. Kolyagin, and B. M. Kogut, “A comparative study of the humic substances and organic matter in physical fractions of Haplic Chernozem under contrasting land uses,” Eurasian Soil Sci. 55 (10), 1371–1383 (2022). https://doi.org/10.1134/S1064229322100039

    Article  Google Scholar 

  6. A. A. Dymov, V. V. Startsev, N. M. Gorbach, I. N. Pausova, D. N. Gabov, and O. Donnerhack, “Comparison of the methods for determining pyrogenically modified carbon compounds,” Eurasian Soil Sci. 54 (11), 1668–1680 (2021). https://doi.org/10.1134/S1064229321110065

    Article  Google Scholar 

  7. O. P. Ermolaev, Erosion Zones in Natural-Anthropogenic Landscapes of River Basins (Izd. Kazan. Univ., Kazan, 1992) [in Russian].

    Google Scholar 

  8. Classification and Diagnostics of Soils of the USSR (Kolos, Moscow, 1977) [in Russian].

  9. L. S. Travnikova, Z. S. Artem’eva, and N. P. Sorokina, “Distribution of the particle-size fractions in soddy-podzolic soils subjected to sheet erosion,” Eurasian Soil Sci. 43 (4), 459–467 (2010).

    Article  Google Scholar 

  10. S. N. Chukov, E. D. Lodygin, and E. V. Abakumov, “Application of 13C NMR spectroscopy to the study of soil organic matter: a review of publications,” Eurasian Soil Sci. 51 (8), 889–900 (2018). https://doi.org/10.1134/S1064229318080021

    Article  Google Scholar 

  11. D. A. Angers and M. Giroux, “Recently deposited organic matter in soil water-stable aggregates,” Soil Sci. Soc. Am. J. 60, 1547–1551 (1996). https://doi.org/10.2136/sssaj1996.03615995006000050037x

    Article  Google Scholar 

  12. Z. Artemyeva, N. Danchenko, Yu. Kolyagin, N. Kirillova, and B. Kogut, “Chemical structure of soil organic matter and its role in aggregate formation in Haplic Chernozem under the contrasting land use variants,” Catena 204, 105403 (2021). https://doi.org/10.1016/j.catena.2021.105403

    Article  Google Scholar 

  13. J. A. Baldock, J. M. Oades, A. M. Vassallo, and M. A. Wilson, “Solid-state CP/MAS 13C NMR analysis of bacterial and fungal cultures isolated from a soil incubated with glucose,” Austr. J. Soil Res. 28, 213–225 (1990). https://doi.org/10.1071/SR9900213

    Article  Google Scholar 

  14. A. A. Berhe, J. W. Harden, M. S. Torn, M. Kleber, S. D. Burton, and J. Harte, “Persistence of soil organic matter in eroding vs. depositional landform positions,” J. Geophys. Res. Biogeosci. 117, G02019 (2012). https://doi.org/10.1029/2011JG001790

    Article  Google Scholar 

  15. A. A. Berhe, J. Harte, J. W. Harden, and M. S. Torn, “The significance of the erosion induced terrestrial carbon sink,” Bioscience 57, 337–346 (2007). https://doi.org/10.1641/B570408

    Article  Google Scholar 

  16. A. A. Berhe and M. Kleber, “Erosion, deposition, and the persistence of soil organic matter: Mechanistic considerations and problems with terminology,” Earth Surf. Processes Landforms 38, 908–912 (2013). https://doi.org/10.1016/j.earscirev.2015.12.005

    Article  Google Scholar 

  17. S. A. Billings, R. W. Buddemeier, D. B. Richter, K. Van Oost, and G. Bohling, “A simple method for estimating the influence of eroding soil profiles on atmospheric CO2,” Global Biogeochem. Cycles 24, GB2001 (2010). https://doi.org/10.1029/2009GB003560

    Article  Google Scholar 

  18. W. Cheng, D. W. Johnson, and Sh. Fu, “Rhizosphere effects on decomposition,” Soil Sci. Soc. Am. J. 67 (5), 1405–1417 (2003). https://doi.org/10.2136/sssaj2003.1418

    Article  Google Scholar 

  19. S. Doetterl, A. A. Berhe, E. Nadeu, Z. Wang, M. Sommer, and P. Fiener, “Erosion, deposition and soil carbon: A review of process-level controls, experimental tools and models to address C cycling in dynamic landscapes,” Earth-Sci. Rev. 154, 102–122 (2016). https://doi.org/10.1016/J.EARSCIREV.2015.12.005

    Article  Google Scholar 

  20. P. Fiener, V. Dlugoß, and K. Van Oost, “Erosion-induced carbon redistribution, burial and mineralisation – is the episodic nature of erosion processes important?,” Catena 133, 282–292 (2015). https://doi.org/10.1016/j.catena.2015.05.027

    Article  Google Scholar 

  21. S. Fontaine and S. Barot, “Size and functional diversity of microbe populations control plant persistence and long-term soil carbon accumulation,” Ecol. Lett. 7, 1075–1087 (2005). https://doi.org/10.1111/j.1461-0248.2005.00813.x

    Article  Google Scholar 

  22. S. Fontaine, S. Barot, P. Barre, N. Bdioui, B. Mary, and C. Rumpel, “Stability of organic carbon in deep soil layers controlled by fresh carbon supply,” Nature 450, 277–280 (2007). https://doi.org/10.1038/nature06275

    Article  Google Scholar 

  23. G. Jakab, J. Szabó, Z. Szalai, E. Mészáros, B. Madarász, C. Centeri, B. Szabó, T. Németh, and P. Sipos, “Changes in organic carbon concentration and organic matter compound of erosion-delivered soil aggregates,” Environ. Earth Sci. 75, 144 (2016). https://doi.org/10.1007/s12665-015-5052-9

    Article  Google Scholar 

  24. J. D. Jastrow, “Soil aggregate formation and the accrual of particulate and mineral-associated organic matter,” Soil Biol. Biochem. 28, 665–676 (1996). https://doi.org/10.1016/0038-0717(95)00159-X

    Article  Google Scholar 

  25. A. Golchin, P. Clarke, and J. M. Oades, “The heterogeneous nature of microbial products as shown by solid-state C-13 CP/MAS NMR spectroscopy,” Biogeochemistry 34, 71–97 (1996). https://doi.org/10.1007/BF02180974

    Article  Google Scholar 

  26. E. G. Gregorich, K. J. Greer, D. W. Anderson, and B. C. Liang, “Carbon distribution and losses, erosion and deposition effects,” Soil Tillage Res. 47 (3), 291–302 (1998). https://doi.org/10.1016/S0167-1987(98)00117-2

    Article  Google Scholar 

  27. J. W. Harden, J. M. Sharpe, W. J. Parton, D. S. Ojima, T. L. Fries, T. G. Huntington, and S. M. Dabney, “Dynamic replacement and loss of soil carbon on eroding cropland,” Global Biogeochem. Cycles 13 (4), 885–901 (1999). https://doi.org/10.1029/1999GB900061

    Article  Google Scholar 

  28. P. G. Hatcher, M. Schnitzer, L. W. Dennis, and G. E. Maciel, “Aromaticity of humic substances in soils,” Soil Sci. Soc. Am. J. 45, 1089–1094 (1981). https://doi.org/10.2136/sssaj1981.03615995004500060016x

    Article  Google Scholar 

  29. N. J. Kuhn, “Erodibility of soil and organic matter, independence of organic matter resistance to interrill erosion,” Earth Surf. Processes Landforms 32 (5), 794–802 (2007). https://doi.org/10.1002/esp.1486

    Article  Google Scholar 

  30. N. J. Kuhn, T. Hoffmann, W. Schwanghart, and M. Dotterweich, “Agricultural soil erosion and global carbon cycle, controversy over?.” Earth Surf. Processes Landforms 34, 1033–1038 (2009). https://doi.org/10.1002/esp.1796

    Article  Google Scholar 

  31. Y. Kuzyakov, J. K. Friedel, and K. Stahr, “Review of mechanisms and quantication of priming effects,” Soil Biol. Biochem. 32, 1485–1498 (2000). https://doi.org/10.1016/S0038-0717(00)00084-5

    Article  Google Scholar 

  32. R. Lal, “Soil erosion and the global carbon budget,” Environ. Int. 29 (4), 437–450 (2003). https://doi.org/10.1016/S0160-4120(02)00192-7

    Article  Google Scholar 

  33. S. Liu, N. Bliss, E. Sundquist, and T. G. Huntington, “Modeling carbon dynamics in vegetation and soil under the impact of soil erosion and deposition,” Global Biogeochem. Cycles 17 (2), 1074 (2003). https://doi.org/10.1029/2002GB002010

    Article  Google Scholar 

  34. C. A. Masiello, O. A. Chadwick, J. Southon, M. S. Torn, and J. W. Harden, “Weathering controls on mechanisms of carbon storage in grassland soils,” Global Biogeochem. Cycles 18 (4), GB4023 (2004). https://doi.org/10.1029/2004GB002219

    Article  Google Scholar 

  35. G. W. McCarty and J. C. Ritchie, “Impact of soil movement on carbon sequestration in agricultural ecosystems,” Environ. Pollut. 116, 423–430 (2002). https://doi.org/10.1016/s0269-7491(01)00219-6

    Article  Google Scholar 

  36. S. V. Smith, W. H. Renwick, R. W. Buddemeier, and C. Crossland, “Budgets of soil erosion and deposition for sediments and sedimentary organic carbon across the conterminous United States,” Global Biogeochem. Cycles 15, 697–707 (2001). https://doi.org/10.1029/2000GB001341

    Article  Google Scholar 

  37. R. F. Stallard, “Terrestrial sedimentation and the carbon cycle: Coupling weathering and erosion to carbon burial,” Global Biogeochem. Cycles 12, 231–257 (1998). https://doi.org/10.1029/98GB00741

    Article  Google Scholar 

  38. J. A. van Veen and E. A. Paul, “Organic carbon dynamics in grassland soils. 1. Background information and computer simulation,” Can. J. Soil Sci. 61, 185–201 (1981). https://doi.org/10.4141/CJSS81-024

    Article  Google Scholar 

  39. World Reference Base for Soil Resources 2014. A Framework for International Classification, Correlation and Communication, Word Soil Resource Report 106 (FAO, Rome, 2014).

    Google Scholar 

  40. S. Xu, M. L. Silveira, L. W. Ngatia, A. E. Normand, L. E. Sollenberger, and K. R. Reddy, “Carbon and nitrogen pools in aggregate size fractions as affected by sieving method and land use intensification,” Geoderma 305, 70–79 (2017). https://doi.org/10.1016/j.geoderma.2017.05.044

    Article  Google Scholar 

Download references

Funding

The work was performed using the equipment of the Center for Collective Use “Functions and Properties of Soil and Soil Cover” of the Dokuchaev Soil Science Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. S. Artemyeva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by G. Chirikova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Artemyeva, Z.S., Danchenko, N.N., Kolyagin, Y.G. et al. Chemical Structure of Organic Matter of Agrochernozems in Different Slope Positions. Eurasian Soil Sc. 56, 705–714 (2023). https://doi.org/10.1134/S1064229323600288

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229323600288

Keywords:

Navigation