Skip to main content
Log in

Microbial Communities in Bentonites from Two Mineral Deposits

  • ECOLOGY OF SOIL MICROORGANISMS
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Bentonite clays are characterized by a large specific surface area and a large pore space volume, which determines their high sorption capacity and allows them to be used as a barrier in the construction of deep geological repositories (DGR) for radioactive waste. DGRs are expected to operate for thousands of years, so it appears acute to predict possible changes in them during this time. In the course of repository operation, bentonites can change their properties under the impact of microorganisms. This study analyzes the structure of microbial community in bentonites sampled from two deposits, i.e., the 10th Khutor (Russia) and Taganskoe (Kazakhstan) at different incubation temperatures (25 and 60°C). Bentonite from the 10th Khutor deposit reveals 10 phyla and 92 genera of bacteria upon incubation at 60°C, and 12 phyla and 94 genera, upon incubation at 25°C. In the Taganskoe deposit bentonite, 14 phyla and 87 genera were identified at the incubation temperature of 60°C, and 15 phyla and 123 genera at 25°C. Bacteria of the Proteobacteria and Firmicutes phyla predominated in the samples. It is concluded that temperature rather than chemical and mineral composition of samples is the main factor influencing the microbial community formation in the studied bentonites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. P. E. Belousov, V. V. Krupskaya, S. V. Zakusin, and V. V. Zhigarev, “Bentonite clays from 10th khutor deposite: features of genesis, composition and adsorption properties,” RUDN J. Eng. Res. 18 (1), 135–143 (2017). https://doi.org/10.22363/2312-8143-2017-18-1-135-143

    Article  Google Scholar 

  2. P. E. Belousov and V. V. Krupskaya, “Bentonite clays of Russia and neighboring countries,” Georesursy 21 (3), 79–90 (2019). https://doi.org/10.18599/grs.2019.3.79-90

    Article  Google Scholar 

  3. F. Bucher and M. Müller–Vonmoos, “Bentonite as a containment barrier for the disposal of highly radioactive wastes,” Appl. Clay Sci. 4 (2), 157–177 (1989). https://doi.org/10.1016/0169-1317(89)90006-9

    Article  Google Scholar 

  4. P. Delage, Y. J. Cui, and A. M. Tang, “Clays in radioactive waste disposal,” J. Rock Mech. Geotech. Eng. 2 (2), 111–123 (2010). https://doi.org/10.3724/SP.J.1235.2010.00111

    Article  Google Scholar 

  5. D. Efimova, A. Tyakht, A. Popenko, A. Vasilyev, I. Altukhov, N. Dovidchenko, V. Odintsova, et al., “Knomics-Biota – a system for exploratory analysis of human gut microbiota data,” BioData Min. 11 (1), 25 (2018). https://doi.org/10.1186/s13040-018-0187-3

    Article  Google Scholar 

  6. L. Esnault, M. Jullien, C. Mustin, O. Bildstein, and M. Libert, “Metallic corrosion processes reactivation sustained by iron-reducing bacteria: Implication on long-term stability of protective layers,” Phys. Chem. Earth, Parts A/B/C 36 (17–18), 1624–1629 (2011). https://doi.org/10.1016/j.pce.2011.10.018

    Article  Google Scholar 

  7. M.-L. Fardeau, V. Barsotti, J.-L. Cayol, S. Guasco, V. Michotey, M. Joseph, P. Bonin, et al., “Caldinitratiruptor microaerophilus, gen. nov., sp. nov. isolated from a French hot spring (Chaudes-Aigues, Massif Central): a novel cultivated facultative microaerophilic anaerobic thermophile pertaining to the Symbiobacterium branch within the Firmicutes,” Extremophiles 14 (3), 241–247 (2010). https://doi.org/10.1007/s00792-010-0302-y

    Article  Google Scholar 

  8. A. A. Grigoryan, D. R. Jalique, P. Medihala, S. Stroes-Gascoyne, G. M. Wolfaardt, J. McKelvie, and D. R. Korber, “Bacterial diversity and production of sulfide in microcosms containing uncompacted bentonites,” Heliyon 4 (8), e00722 (2018). https://doi.org/10.1016/j.heliyon.2018.e00722

    Article  Google Scholar 

  9. L. Hallbeck and K. Pedersen, “Characterization of microbial processes in deep aquifers of the Fennoscandian Shield,” Appl. Geochem. 23 (7), 1796–1819 (2008). https://doi.org/10.1016/j.apgeochem.2008.02.012

    Article  Google Scholar 

  10. H. M. Haynes, C. I. Pearce, C. Boothman, and J. R. Lloyd, “Response of bentonite microbial communities to stresses relevant to geodisposal of radioactive waste,” Chem. Geol. 501, 58–67 (2018). https://doi.org/10.1016/j.chemgeo.2018.10.004

    Article  Google Scholar 

  11. L. W. Hugerth, H. A. Wefer, S. Lundin, H. E. Jakobsson, M. Lindberg, S. Rodin, L. Engstrand, et al., “DegePrime, a program for degenerate primer design for broad-taxonomic-range PCR in microbial ecology studies,” Appl. Environ. Microbiol 80 (16), 5116–5123 (2014). https://doi.org/10.1128/AEM.01403-14

    Article  Google Scholar 

  12. R. C. Kale, B. Kapil, and K. Ravi, “Response of compacted bentonite to hyperalkalinity and thermal history,” Sci. Rep. 11 (1), 15483 (2021). https://doi.org/10.1038/s41598-021-95023-5

    Article  Google Scholar 

  13. J.-S. Kim, S.-K. Kwon, M. Sanchez, and G.-C. Cho, “Geological storage of high-level nuclear waste,” KSCE J. Civ. Eng. 15 (4), 721–737 (2011). https://doi.org/10.1007/s12205-011-0012-8

    Article  Google Scholar 

  14. V. V. Krupskaya, S. V. Zakusin, E. A. Tyupina, O. V. Dorzhieva, M. S. Chernov, and Ya. V. Bychkova, “Transformation of the montmorillonite structure and its adsorption properties due to the thermochemical treatment,” Geochem. Int. 57 (3), 314–330 (2019). https://doi.org/10.1134/S0016702919030066

    Article  Google Scholar 

  15. H. Liu, X. Dang, H. Zhang, J. Dong, Z. Zhang, C. Wang, R. Zhang, et al., “Microbial diversity in bentonite, a potential buffer material for deep geological disposal of radioactive waste,” IOP Conf. Ser. Earth Environ. Sci. 227 (2), 022010 (2019). https://doi.org/10.1088/1755-1315/227/2/022010

  16. M. Lopez-Fernandez, A. Cherkouk, R. Vilchez–Vargas, R. Jauregui, D. Pieper, N. Boon, I. Sanchez-Castro, et al., “Bacterial diversity in bentonites, engineered barrier for deep geological disposal of radioactive wastes,” Microbiol. Ecol. 70 (4), 922–935 (2015). https://doi.org/10.1007/s00248-015-0630-7

    Article  Google Scholar 

  17. A. Meleshyn, “Microbial processes relevant for the long-term performance of high-level radioactive waste repositories in clays,” Geol. Soc., London, Spec. Publ. 400 (1), 179–194 (2014). https://doi.org/10.1144/SP400.6

    Article  Google Scholar 

  18. A. Yu. Meleshyn, S. V. Zakusin, and V. V. Krupskaya, “Swelling pressure and permeability of compacted bentonite from 10th Khutor deposit (Russia),” Minerals 11 (7), 742 (2021). https://doi.org/10.3390/min11070742

    Article  Google Scholar 

  19. A. Yu. Merkel, I. Yu. Tarnovetskii, O. A. Podosokorskaya, and S. V. Toshchakov, “Analysis of 16S rRNA primer systems for profiling of thermophilic microbial communities,” Microbiology (N.Y.) 88 (6), 671–680 (2019). https://doi.org/10.1134/S0026261719060110

    Article  Google Scholar 

  20. J. Moreno, J. A. López–González, M. A. Arcos–Nievas, F. Suárez–Estrella, M. M. Jurado, M. J. Estrella–González, and M. J. López, “Revisiting the succession of microbial populations throughout composting: a matter of thermotolerance,” Sci. Total Environ. 773, 145587 (2021). https://doi.org/10.1016/j.scitotenv.2021.145587

    Article  Google Scholar 

  21. R. Nandakumar, A. K. M. Shahjahan, X. L. Yuan, E. R. Dickstein, D. E. Groth, C. A. Clark, R. D. Cartwright, et al., “Burkholderia glumae and B. gladioli Cause Bacterial Panicle Blight in Rice in the Southern United States,” Plant Dis. 93 (9), 896–905 (2009). https://doi.org/10.1094/PDIS-93-9-0896

    Article  Google Scholar 

  22. W. L. Nicholson, N. Munakata, G. Horneck, H. J. Melosh, and P. Setlow, “Resistance of bacillus endospores to extreme terrestrial and extraterrestrial environments,” Microbiol. Mol. Biol. Rev. 64 (3), 548–572 (2000). https://doi.org/10.1128/MMBR.64.3.548-572.2000

    Article  Google Scholar 

  23. M. Pannekens, L. Kroll, H. Müller, F. T. Mbow, and R. U. Meckenstock, “Oil reservoirs, an exceptional habitat for microorganisms,” New Biotechnol. 49, 1–9 (2019). https://doi.org/10.1016/j.nbt.2018.11.006

    Article  Google Scholar 

  24. K. Pedersen, Microbial Processes in Radioactive Waste Disposal (2000). https://www.researchgate.net/publication/264450697_Microbial_Processes_in_Radioactive_Waste_Disposal

  25. A. Ranjani, D. Dhanasekaran, and P. M. Gopinath, “An introduction to Actinobacteria,” in Actinobacteria – Basics and Biotechnological Applications (InTech, 2016). https://doi.org/10.5772/62329

  26. P. D. Schloss, S. L. Westcott, T. Ryabin, J. R. Hall, M. Hartmann, E. B. Hollister, R. A. Lesniewski, et al., “Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities,” Appl. Environ. Microbiol. 75 (23), 7537–7541 (2009). https://doi.org/10.1128/AEM.01541-09

    Article  Google Scholar 

  27. N. R. Smart, A. P. Rance, B. Reddy, L. Hallbeck, K. Pedersen, and A. J. Johansson, “In situ evaluation of model copper-cast iron canisters for spent nuclear fuel: a case of microbiologically influenced corrosion (MIC),” Corros. Eng., Sci. Technol. 49 (6), 548–553 (2014). https://doi.org/10.1179/1743278214Y.0000000213

    Article  Google Scholar 

  28. J. P. Steinberg and E. M. Burd, “Other gram-negative and gram-variable bacilli,” in Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases (2014), Vol. 2, pp. 2667–2683. https://doi.org/10.1016/B978-1-4557-4801-3.00238-1

  29. M. Stipanicev, F. Turcu, L. Esnault, E. W. Schweitzer, R. Kilian, and R. Basseguy, “Corrosion behavior of carbon steel in presence of sulfate-reducing bacteria in seawater environment,” Electrochim. Acta 113, 390–406 (2013). https://doi.org/10.1016/j.electacta.2013.09.059

    Article  Google Scholar 

  30. S. Stroes-Gascoyne, C. J. Hamon, D. A. Dixon, and J. B. Martino, “Microbial analysis of samples from the tunnel sealing experiment at AECL’s Underground Research Laboratory,” Phys. Chem. Earth, Parts A/B/C 32 (1–7), 219–231 (2007). https://doi.org/10.1016/j.pce.2006.01.002

  31. T. Taborowski, et al., Bacterial Presence and Activity in Compacted Bentonites (Mölnlycke, 2019). https://igdtp. eu/wp-content/uploads/2019/05/MIND-2019-04-D2.4-BacterialPresenceActivityInCompactedBentonites-v2.pdf

  32. P. Wersin, L. H. Johnson, and I. G. McKinley, “Performance of the bentonite barrier at temperatures beyond 100°C: a critical review,” Phys. Chem. Earth, Parts A/B/C 32 (8–14), 780–788 (2007). https://doi.org/10.1016/j.pce.2006.02.051

  33. A. Willems, “The family Comamonadaceae,” in The Prokaryotes: Alphaproteobacteria and Betaproteobacteria (2014), Vol. 9783642301971. https://doi.org/10.1007/978-3-642-30197-1_238

  34. http://info.geology.gov.kz/

  35. https://mothur.org/wiki/miseq_sop

  36. https://mothur.org/wiki/silva_reference_files/

Download references

Funding

The study was carried out within the framework of the State Task “Soil microbiomes: genomic diversity, functional activity, geography and biotechnological potential”, topic no. 121040800174-6; and in accordance with the Development Program of Interdisciplinary Scientific and Educational School at Lomonosov Moscow State University “The planet future and global environmental changes”. The study of mineral and chemical composition of bentonites was performed in the framework of IGEM RAS State budget topic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. D. Kosheleva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Eremina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kosheleva, D.D., Cheptsov, V.S., Stepanov, A.L. et al. Microbial Communities in Bentonites from Two Mineral Deposits. Eurasian Soil Sc. 56, 591–598 (2023). https://doi.org/10.1134/S1064229323600173

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229323600173

Keywords:

Navigation